
NightTrace RT User’s Guide
Version 6.1

(RedHawkTM Linux®)

0898398-150
July 2006

Copyright 2006 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is intended for use with Concurrent
products by Concurrent personnel, customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Computer Corporation makes no warranties, expressed or implied, concerning the information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the correction or comment on the
copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation, 2881 Gateway Drive, Pompano Beach, FL 33069-4324.
Mark the envelope “Attention: Publications Department.” This publication may not be reproduced for any other reason in any form without
written permission of the publisher.

NightSim, iHawk, RedHawk, NightStar, NightProbe, NightTrace, NightTune, and NightView are trademarks of Concurrent Computer Corpora-
tion.

Intel is a registered trademark of Intel.

AMD is a trademark of Advanced Micro Devices, Inc.

NFS is a trademark of Sun Microsystems, Inc.

OSF/Motif is a registered trademark of The Open Group.

The registered trademark Linux is used pursuant to a sublicense from the Linux Mark Institute, the exclusive licensee of Linus Torvalds, owner of
the mark in the U.S. and other countries.

Red Hat is a registered trademark of Red Hat, Inc.

X Window System and X are trademarks of The Open Group.

HyperHelp is a trademark of Bristol Technology Inc.

The Table widget is a 1990, 1991, and 1992 copyright of David E. Smyth with the following warning: “Permission to use, copy, modify, and dis-
tribute this software and its documentation for any purpose without fee is granted, provided that the above copyright notice appear in all copies and
that both copyright notice and this permission notice appear in supporting documentation, and that the name of David E. Smyth not be used in
advertising or publicity pertaining to distribution of the software without specific written prior permission.”

Preface

Scope of Manual

This manual is a reference document and users guide for NightTraceTM, a graphical, inter-
active debugging and performance analysis tool.

Structure of Manual

The manual includes for major parts as shown below:

• Part I - Event Logging and Capture

• Part II - Graphical Analysis

• Part III - Programmatic Analysis

• Part IV - Reference

Man page descriptions of programs, system calls, subroutines, and file formats appear in
the system manual pages.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify appear
in italic type. Special terms and comments in code may also appear
in italic.

list bold User input appears in list bold type and must be entered exactly
as shown. Names of directories, files, commands, options and man
page references also appear in list bold type.

list Operating system and program output such as prompts and messages
and listings of files and programs appears in list type. Keywords
also appear in list type.

emphasis Words or phrases that require extra emphasis use emphasis type.
iii

NightTrace RT User’s Guide
window Keyboard sequences and window features such as button, field, and
menu labels and window titles appear in window type.

[] Brackets enclose command options and arguments that are optional.
You do not type the brackets if you choose to specify such option or
arguments.

{} Braces enclose mutually exclusive choices separated by the pipe (|)
character, where one choice must be selected. You do not type the
braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

Referenced Publications

The following publications are referenced in this document:

0890240 Concurrent Fortran 77 Reference Manual
0890300 X Window® System User’s Guide
0890378 C: A Reference Manual
0890380 OSF/MotifTM Documentation Set (3 volumes)
0898008 NightStar RT Installation Guide
0898008 NightStar RT Tutorial
0898398 NightTrace RT User’s Guide
0898465 NightProbe RT User’s Guide
0898480 NightSim RT User’s Guide
0898515 NightTune RT User’s Guide
0898537 MAXAdaTM for Linux Reference Manual
0891019 Concurrent C Reference Manual
0891082 Real-Time Clock and Interrupt Module User’s Guide
iv

Contents

Chapter 1 Introduction

User Trace Point Placement. .1-1
Kernel Trace Point Placement .1-2
Timestamps .1-2
Languages .1-3
Information Displayed .1-3

Part I - Event Logging and Capture

Chapter 2 Using the NightTrace Logging API

Language-Specific Source Considerations .2-1
C .2-1
Fortran .2-2
Ada .2-2

Inter-Process Communication and Library Routines .2-3
Understanding NightTrace Library Calls .2-4

trace_begin .2-6
trace_open_thread. .2-11
trace_event and Its Variants .2-12
trace_enable, trace_disable, and Their Variants .2-17
trace_flush and trace_trigger .2-20
trace_close_thread .2-22
trace_end. .2-23
trace_diag_mode. .2-24
trace_diag_func .2-25

Disabling Tracing .2-25
Threads and Logging .2-26

trace_register_thread .2-27
Pthread_create .2-28

Compiling and Linking .2-28
C Compilation and Linking .2-29
Fortran Compilation and Linking. .2-29
Ada Example .2-29

. .2-29

Chapter 3 Capturing User Events with ntraceud

The ntraceud Daemon .3-1
ntraceud Modes .3-2
The Default User Daemon Configuration .3-2
ntraceud Options .3-3
Invoking ntraceud .3-6
v

NightTrace RT User’s Guide
Chapter 4 Capturing Kernel Events with ntracekd

The ntracekd Daemon . 4-1
ntracekd Modes . 4-1
ntracekd Options . 4-2
ntracekd Invocations . 4-5

Chapter 5 Performance Tuning

Preventing Trace Event Loss . 5-1
Daemon Scheduling Adjustment . 5-1
Increasing Trace Buffer Size. 5-2
Programmatic Flushing. 5-3

Conserving Disk Space . 5-3
Conserving Memory and Accelerating ntrace . 5-3

Part II - Graphical Analysis

Chapter 6 Invoking NightTrace

Command-line Options . 6-1
Summary Criteria . 6-5

Command-line Arguments . 6-10
Trace Event Files . 6-11
Event Map Files . 6-11
Configuration Files . 6-14

Tables. 6-14
String Tables . 6-16
Pre-Defined Strings Tables. 6-17
Format Tables . 6-20

Session Configuration Files . 6-24
Trace Data Segments . 6-25

Chapter 7 The NightTrace Main Window

NightTrace Main window Menu Bar . 7-2
NightTrace . 7-2

Unsaved Changes . 7-7
Search . 7-8
Summary. 7-11
Daemons . 7-15

Login . 7-18
Enter Password . 7-18
Attach Daemons . 7-20

Pages . 7-22
Build Custom Kernel Page . 7-25

Select Graphs . 7-27
Build Process Specific Kernel Page Dialog . 7-29

Profiles . 7-30
Event . 7-34
Edit . 7-36
View . 7-38
vi

Contents
Tools .7-39
Help .7-41

NightTrace Tool Bar .7-43
. .7-44
Profile Area .7-45
Event Area .7-46
Event Detail Area .7-47
Trace Segment Statistic Area. .7-48
Daemon Control Area .7-50

Enable / Disable Trace Events .7-55
Daemon Definition Dialog .7-57

Import Daemon Definition .7-60
General .7-62

Target. .7-62
Trace Events Output .7-64

User Trace. .7-67
Locking Policy .7-67
Shared Memory .7-67
User Event Buffer .7-68
Inheritance. .7-68

Events .7-70
Runtime .7-72

Scheduling. .7-72
CPU Bias .7-73

Other .7-74
Streaming Options. .7-74
Kernel Trace Buffer Options .7-75
Kernel Trace CPU Options .7-76

Chapter 8 Profiles

Profile Menu Bar .8-2
File Menu .8-3
Profile Menu. .8-4
Search Menu. .8-6
Summary Menu .8-6
Results Menu .8-7
Edit Menu .8-7
Help Menu .8-8

Profile Tool Bar .8-8
. .8-9
Profile Text Area .8-9
Profile Definition Area .8-10
Action Control Area .8-16
Summarizing Statistical Information. .8-19

Condition Summaries .8-19
State Summaries .8-19
Summary Options. .8-19
Summary Scripts .8-20

Summary Script Environment Variables .8-20
vii

NightTrace RT User’s Guide
Chapter 9 Display Pages

Default Display Page . 9-1
Menu Bar . 9-3

Page. 9-3
Search . 9-5
Summary. 9-6
Graph . 9-7
Event . 9-9
Edit . 9-13

Tags . 9-14
Edit String Tables . 9-16

Edit String Table. 9-18
Edit String Table Entry . 9-20
Edit Event Map Entry . 9-22

Zoom. 9-24
View . 9-25
Help. 9-26

Display Page Tool Bar . 9-26
 . 9-27
Message Display Area . 9-29
Grid . 9-29
Interval Scroll Bar . 9-31
Interval Control Area . 9-32

Chapter 10 Display Objects

Types of Display Objects . 10-3
Grid Label . 10-4
Data Box . 10-5
Column . 10-6
Event Graph . 10-6
State Graph . 10-7
Data Graph . 10-8
Ruler . 10-10

Operations on Display Objects . 10-12
Creating Display Objects . 10-12
Selecting Display Objects . 10-13
Moving Display Objects . 10-14
Resizing Display Objects . 10-14
Configuring Display Objects . 10-15

Grid Label . 10-16
Data Box . 10-18
Event Graph. 10-25
State Graph . 10-31
Data Graph. 10-37
Ruler . 10-45
Configuration Dialog Push Buttons. 10-46

Chapter 11 Using Expressions

Operators . 11-1
Operands . 11-1
viii

Contents
Constants .11-2
Functions .11-2

Function Parameters .11-6
Function Terminology .11-7
Trace Event Functions .11-13

id() .11-15
arg() .11-16
arg_dbl() .11-17
arg_long() .11-18
num_args() .11-19
pid() .11-20
thread_id() .11-21
task_id(). .11-22
tid() .11-23
cpu() .11-24
offset() .11-25
time() .11-26
node_id() .11-27
pid_table_name(). .11-28
tid_table_name() .11-29
node_name() .11-30
process_name() .11-31
task_name() .11-32
thread_name() .11-33
Multi-Event Functions. .11-34

event_gap(). .11-34
event_matches() .11-35

State Functions .11-36
Start Functions. .11-36

start_id() .11-37
start_arg() .11-38
start_arg_dbl() .11-39
start_arg_long() .11-40
start_num_args() .11-41
start_pid() .11-42
start_thread_id() .11-43
start_task_id(). .11-44
start_tid() .11-45
start_cpu() .11-46
start_offset() .11-47
start_time() .11-48
start_node_id() .11-49
start_pid_table_name(). .11-50
start_tid_table_name() .11-51
start_node_name() .11-52

End Functions .11-53
end_id() .11-54
end_arg() .11-55
end_arg_dbl() .11-56
end_arg_long() .11-57
end_num_args() .11-58
end_pid() .11-59
end_thread_id() .11-60
end_task_id() .11-61
ix

NightTrace RT User’s Guide
end_tid() . 11-62
end_cpu() . 11-63
end_offset(). 11-64
end_time(). 11-65
end_node_id(). 11-66
end_pid_table_name() . 11-67
end_tid_table_name() . 11-68
end_node_name() . 11-69

Multi-State Functions . 11-70
state_gap() . 11-70
state_dur(). 11-71
state_matches() . 11-72
state_status() . 11-73

Offset Functions . 11-74
offset_id() . 11-75
offset_arg(). 11-76
offset_arg_dbl() . 11-77
offset_arg_long() . 11-78
offset_num_args() . 11-79
offset_pid() . 11-80
offset_thread_id() . 11-81
offset_task_id() . 11-82
offset_tid() . 11-83
offset_cpu() . 11-84
offset_time() . 11-85
offset_node_id(). 11-86
offset_pid_table_name() . 11-87
offset_tid_table_name() . 11-88
offset_node_name() . 11-89
offset_process_name() . 11-90
offset_task_name() . 11-91
offset_thread_name() . 11-92

Summary Functions . 11-93
min() . 11-93
max() . 11-94
avg(). 11-95
sum() . 11-96
min_offset() . 11-97
max_offset(). 11-98
summary_matches(). 11-99

Format and Table Functions . 11-100
get_string(). 11-100
get_item(). 11-102
get_format() . 11-104
format() . 11-106

Profile References . 11-107

Chapter 12 Kernel Tracing

Primary Kernel Trace Events . 12-1
Context Switch Trace Event . 12-1
Interrupt Trace Events. 12-2
Exception Trace Events . 12-3
x

Contents
Syscall Trace Events. .12-4
Kernel Work Events .12-5

Additional Kernel Events .12-6
Logging Custom Kernel Events .12-8

Viewing Kernel Trace Event Files. .12-8
Kernel Display Pages .12-9

Node and CPU Information. .12-9
Context Switch Information .12-10
Interrupt Information. .12-10
Exception Information. .12-11
System call Information .12-11
Process Information. .12-12
Kernel Events .12-13
Color Information .12-13

Kernel String Tables .12-14

Part III - Programmatic Analysis

Chapter 13 Using the NightTrace Analysis API

NightTrace Analysis Application Programming Interface 13-1
Data Structures .13-3

tr_cb_t .13-3
tr_cond_cb_func_t. .13-4
tr_cond_func_t .13-4
tr_cond_t .13-5
tr_dir_t. .13-5
tr_offset_t .13-5
tr_state_action_t .13-6
tr_state_cb_func_t .13-6
tr_state_info_t .13-7
tr_state_t .13-7
tr_stream_event_t .13-8
tr_stream_func_t .13-8
tr_string_node_t .13-8
tr_t .13-8

Functions .13-9
API Initialization and Destruction. .13-13

tr_init() .13-13
tr_destroy(). .13-13

Error Detection, Collection, and Reporting .13-15
tr_error_clear() .13-15
tr_error_check() .13-16

Input Specification and Streaming Control .13-17
tr_open_file() .13-17
tr_open_stream() .13-18
tr_close() .13-19
tr_stream_notify() .13-20
tr_stream_read() .13-21
tr_stream_size() .13-22
tr_free() .13-23

Event Offset Positioning .13-24
xi

NightTrace RT User’s Guide
tr_next_event() . 13-24
tr_next_event_() . 13-25
tr_prev_event() . 13-25
tr_prev_event_() . 13-26
tr_search(). 13-27
tr_seek() . 13-28

Basic Event Attribute Functions . 13-29
tr_id() . 13-30
tr_id_() . 13-30
tr_time() . 13-31
tr_time_() . 13-32
tr_nargs() . 13-32
tr_nargs_() . 13-33
tr_arg_int() . 13-34
tr_arg_int_() . 13-34
tr_arg_dbl(). 13-35
tr_arg_dbl_(). 13-36
tr_pid() . 13-36
tr_pid_() . 13-37
tr_tid(). 13-38
tr_tid_(). 13-38
tr_thread_id() . 13-39
tr_thread_id_() . 13-39
tr_task_id() . 13-40
tr_task_id_() . 13-41
tr_cpu() . 13-41
tr_cpu_() . 13-42
tr_node() . 13-43
tr_node_() . 13-44
tr_process_name() . 13-44
tr_process_name_() . 13-45
tr_task_name() . 13-46
tr_task_name_() . 13-46
tr_thread_name() . 13-47
tr_thread_name_() . 13-47

Conditions . 13-49
tr_cond_create() . 13-50
tr_cond_reset() . 13-51
tr_cond_find(). 13-51
tr_cond_id() . 13-52
tr_cond_id_range() . 13-53
tr_cond_id_clear() . 13-54
tr_cond_cpu() . 13-55
tr_cond_cpu_clear() . 13-55
tr_cond_pid() . 13-56
tr_cond_pid_name() . 13-57
tr_cond_pid_clear() . 13-58
tr_cond_tid() . 13-59
tr_cond_tid_name() . 13-60
tr_cond_tid_clear() . 13-61
tr_cond_node() . 13-62
tr_cond_node_clear() . 13-63
tr_cond_func_or(). 13-64
tr_cond_func_and() . 13-66
xii

Contents
tr_cond_func_clear() .13-68
tr_cond_expr_and() .13-69
tr_cond_expr_or() .13-70
tr_cond_not() .13-71
tr_cond_or() .13-72
tr_cond_and() .13-73
tr_cond_copy() .13-74
tr_cond_name() .13-75
tr_cond_satisfy() .13-75
tr_cond_satisfy_() .13-76
tr_cond_register(). .13-77
tr_cond_offset() .13-78

State-oriented Interfaces .13-79
tr_state_create() .13-80
tr_state_find(). .13-81
tr_state_name(). .13-81
tr_state_start_id() .13-82
tr_state_start_id_range() .13-83
tr_state_start_id_clear() .13-84
tr_state_end_id() .13-84
tr_state_end_id_range() .13-85
tr_state_end_id_clear(). .13-86
tr_state_start_cond(). .13-86
tr_state_start_cond_clear(). .13-87
tr_state_end_cond() .13-88
tr_state_end_cond_clear() .13-88
tr_activate() .13-89
tr_state_info(). .13-90
tr_state_info_(). .13-91
tr_state_active() .13-92
tr_state_active_() .13-93

Output Function. .13-94
tr_copy_input(). .13-94

String Table Functions. .13-95
tr_get_string(). .13-95
tr_get_item(). .13-96
tr_create_table() .13-97
tr_append_table() .13-98

Callback Interfaces .13-99
tr_iterate(). .13-99
tr_halt(). .13-100
tr_cancel_cb(). .13-100
tr_cond_cb() .13-101
tr_state_cb() .13-102

Part IV - Reference

Appendix A NightStar Licensing

License Keys . A-1
License Requests . A-2
License Server . A-2
xiii

NightTrace RT User’s Guide
License Reports . A-3
Firewall Configuration for Floating Licenses . A-3
License Support . A-4

Appendix B Kernel Dependencies

Advantages for NightView. B-1
Advantages for NightTrace . B-2
Advantages for NightProbe . B-2
Advantages for NightTune . B-3
Advantages for NightSim. B-3

Appendix C NightTrace Logging API Examples

Single Threaded C Example . C-1
Multi-Threaded C++ Example . C-3
Fortran Example. C-6
Rare Occurrence Example . C-7

Appendix D NightTrace Analysis API Examples

list. D-2
list.c. D-2

search . D-4
search.c . D-4

watchdog . D-7
watchdog.c . D-7

ptime. D-10
ptime.c. D-11

browse . D-13
browse.c . D-13

detect . D-24
detect.c . D-25

Appendix E Answers to Common Questions

Appendix F Glossary

Illustrations

Figure 2-1. Inter-Process Communication and Library Routines 2-4
Figure 7-1. NightTrace Main Window . 7-1
Figure 7-2. NightTrace menu . 7-3
Figure 7-3. Unsaved Changes / Exit dialog . 7-7
Figure 7-4. Unsaved Changes / Proceed dialog . 7-8
Figure 7-5. Search menu . 7-9
Figure 7-6. Search Options dialog . 7-10
Figure 7-7. Summary menu . 7-11
Figure 7-8. Summary Options dialog . 7-12
Figure 7-9. Daemons menu . 7-15
Figure 7-10. Login dialog . 7-18
xiv

Contents
Figure 7-11. Enter Password dialog .7-19
Figure 7-12. Attach Daemons dialog .7-20
Figure 7-13. Pages menu .7-22
Figure 7-14. New Display Page .7-23
Figure 7-15. Build Custom Kernel Page dialog .7-25
Figure 7-16. Select CPUs dialog .7-25
Figure 7-17. Select Graphs dialog .7-27
Figure 7-18. Build Process Specific Kernel Page dialog7-29
Figure 7-19. Profiles menu .7-31
Figure 7-20. Export Profiles dialog .7-33
Figure 7-21. Event menu .7-35
Figure 7-22. Edit menu .7-36
Figure 7-23. View menu .7-38
Figure 7-24. Tools menu .7-39
Figure 7-25. Help menu .7-41
Figure 7-26. NightTrace Main Tool Bar .7-43
Figure 7-27. Daemon Control Area .7-50
Figure 7-28. Enable / Disable Trace Events dialog .7-55
Figure 7-29. Daemon Definition dialog .7-57
Figure 7-30. Import Daemon Definition dialog .7-60
Figure 7-31. Daemon Definition dialog - General .7-62
Figure 7-32. Daemon Definition dialog - User Trace .7-67
Figure 7-33. Daemon Definition dialog - Events .7-70
Figure 7-34. Daemon Definition dialog - Runtime .7-72
Figure 7-35. Daemon Definition dialog - Other .7-74
Figure 8-1. Profiles Dialog .8-2
Figure 8-2. File menu .8-3
Figure 8-3. Profile menu .8-4
Figure 8-4. Chose Profile dialog .8-5
Figure 8-5. Search menu .8-6
Figure 8-6. Summary menu .8-6
Figure 8-7. Results menu .8-7
Figure 8-8. Edit menu .8-7
Figure 8-9. Profiles Tool Bar .8-8
Figure 8-10. Profile Definition Area .8-10
Figure 9-1. A Default Display Page .9-2
Figure 9-2. Display Page - Page Menu .9-3
Figure 9-3. Display Page - Search Menu .9-5
Figure 9-4. Display Page - Summary Menu .9-6
Figure 9-5. Display Page - Graph Menu .9-7
Figure 9-6. Display Page - Event Menu .9-10
Figure 9-7. Discard Events dialog .9-12
Figure 9-8. Display Page - Edit Menu .9-13
Figure 9-9. Tags dialog .9-14
Figure 9-10. Set Tag Name dialog .9-16
Figure 9-11. Edit String Tables dialog .9-16
Figure 9-12. Add Table dialog .9-17
Figure 9-13. Edit String Table dialog .9-19
Figure 9-14. Edit String Table Entry dialog .9-21
Figure 9-15. Variable Argument dialog .9-22
Figure 9-16. Edit Event Map Entry dialog .9-22
Figure 9-17. Display Page - Zoom Menu .9-24
Figure 9-18. Display Page - View Menu .9-25
Figure 9-19. Display Page Tool Bar .9-26
xv

NightTrace RT User’s Guide
Figure 9-20. Message Display Area . 9-29
Figure 9-21. The Grid . 9-30
Figure 9-22. The Interval Scroll Bar . 9-31
Figure 9-23. Interval Control Area . 9-33
Figure 10-1. Grid Label Examples . 10-4
Figure 10-2. Data Box Examples . 10-5
Figure 10-3. Column Example . 10-6
Figure 10-4. Event Graph Example . 10-7
Figure 10-5. State Graph Example . 10-7
Figure 10-6. Data Graph Examples . 10-9
Figure 10-7. Ruler Example . 10-10
Figure 10-8. Ruler Indicators . 10-11
Figure 10-9. Configure Grid Label dialog . 10-16
Figure 10-10. Configure Data Box dialog . 10-18
Figure 10-11. Configure Event Graph dialog . 10-25
Figure 10-12. Configure State Graph dialog . 10-31
Figure 10-13. Configure Data Graph dialog . 10-37
Figure 10-14. Fill Style - Solid vs. None . 10-43
Figure 10-15. Maximum vs. Minimum Values . 10-44
Figure 10-16. Configure Ruler dialog . 10-45
Figure 10-17. Mark and Tag Indicators . 10-46
Figure 11-1. Function Terminology Illustrated . 11-8
Figure 11-2. States and Events . 11-9
Figure 12-1. Sample Kernel Display Page . 12-9
Figure 12-2. Node and CPU Box . 12-9
Figure 12-3. Context Switch Lines . 12-10
Figure 12-4. Interrupt Box and Interrupt Graph . 12-10
Figure 12-5. Exception Box and Exception Graph . 12-11
Figure 12-6. System Call Box and System call Graph 12-11
Figure 12-7. Process Information Row . 12-12
Figure 12-8. Kernel Events Row . 12-13
Figure 12-9. Color Key . 12-13
Figure 1-1. Automatically Generated Data Display Page C-5

Tables

Table 3-1. NightTrace Configuration Defaults . 3-3
Table 9-1. Manipulating the Interval Scroll Bar . 9-32
Table 11-1. Time Units and Constant Suffixes . 11-2
Table 11-2. NightTrace Functions. 11-4
Table 12-1. PROCESS Event Codes. 12-5
Table 12-2. NETWORK Kernel Event Sub-ID Codes . 12-6
Table 12-3. MEMORY Kernel Event Sub-ID Codes . 12-6

Index
xvi

1
Chapter 1Introduction

1
1
1

NightTrace is a member of the NightStarTM RT family of tools. NightTrace provides an
interactive debugging and performance analysis tool, trace data collection daemons, and
two Application Programming Interfaces (APIs) allowing user applications to log data
values as well as analyze data collected from user or kernel daemons. NightTrace allows
you to graphically display information about important events in your application and the
kernel, including event occurrences, timings, and data values. NightTrace consists of the
following parts:

ntrace a graphical tool that controls daemon ses-
sions and presents user and kernel trace
events for interactive analysis

ntraceud a daemon program that copies user applica-
tions’ trace events from shared memory to
trace event files

ntracekd a daemon program that copies operating sys-
tem kernel trace events from kernel memory
to trace event files

NightTrace Logging API libraries and include files for use in user
applications that log trace events to shared
memory

NightTrace Analysis API libraries and include files for use in user
applications that want to analyze data col-
lected from user or kernel daemons

NightTrace operates in conjunction with other members of the NightStar RT family.
NightView, a multi-process and multi-thread application debugger, provides for dynamic
insertion of trace points in programs being debugged. The NightProbe data recording util-
ity allows sampled data to be passed directly to NightTrace for graphic or textual display.

NightTrace uses the NightStar License Manager (NSLM) to control access to the
NightStar RT tools. See “NightStar Licensing” on page A-1 for more information.

NightTrace operates with the all flavors of the RedHawk kernel; standard, tracing, and
debug. In order to use kernel tracing, you must select the tracing or debug kernel at boot
time from the boot-loader menu.

User Trace Point Placement 1

A user trace point is a place of interest in application source code. At each user trace
point, you make your application log some user-specified information. This logged infor-
1-1

NightTrace RT User’s Guide
mation is collectively called a trace event. Each trace event has a user-defined trace event
ID number and optional user-supplied arguments.

Some typical user trace-point locations include:

• Suspected bug locations

• Process, subprogram, or loop entry and exit points

• Timing points

• Synchronization points for multi-process interaction

• Endpoints of atomic operations

In addition to the user-supplied information, trace events automatically contain informa-
tion identifying the process ID of the program generating the trace event. For
multi-threaded applications, the thread ID of the specific thread generating the trace is
recorded.

Kernel Trace Point Placement 1

The RedHawk kernel is built with kernel trace points inserted at various points throughout
the kernel source code. These trace point provide information relating to:

• System call entry and exit

• Interrupt entry and exit

• Exception entry and exit

• Kernel service routines

• Process creation, termination, and signalling

• Network activity

Analysis of kernel trace events can provide significant insight into the operation of the
system and interactions between user applications. In addition to graphical displays,
NightTrace provides textual description of kernel trace events which reveal useful infor-
mation even for those not familiar with kernel programming.

For kernel programmers, additional custom trace events can be logged with simple kernel
utility routines which can be inserted into the kernel source or in kernel module source
routines.

Timestamps 1

Each trace event is tagged with a timestamp with sub-microsecond precision. This allows
you to view and comprehend complex interactions between multiple processes and the
operating system, executing on single or multiple CPU systems.
1-2

Introduction
By default, an architecture-specific timing source is utilized. For Intel and AMD64, the
Intel Time Stamp Counter (TSC register) is used. However, the Real-Time Clock and
Interrupt Module (RCIM) can be also used as a timestamp source.

The RCIM is a hardware module which provides a variety of clocks and interrupts
sources, including two high-resolution timers which may be synchronized between multi-
ple systems. Use of the RCIM timing source by NightTrace is advantageous when gather-
ing data from multiple systems simultaneously. NightTrace can then present a synchro-
nized view of user and kernel activity on multiple systems from a single session.

For more information about the RCIM, please see the clock_synchronize(1M),
rcim(7), rcimconfig(1M), and sync_clock(7) man pages.

Languages 1

The application programming interface for logging trace events is provided in C and For-
tran for use with the following compilers:

• Concurrent Ada

• GNU C/C++

• GNU Fortran

• Intel C/C++

• Intel Fortran

• Concurrent Fortran 77

The application programming interface for trace event analysis is provided solely in C for
use with C and C++ programs.

Information Displayed 1

The ntrace display utility lets you examine trace events. Data appear as numerical sta-
tistics and as graphical images. You can create and configure the graphical components
called display objects or use the defaults. By creating your own display objects, you can
make the graphical displays more meaningful to you. You can customize display objects to
reflect your preferences in content, labeling, position, size, color, and font.

With the ntrace display utility, you can perform customized and for individual events
or user-defined states. Summaries can be generated via command line invocation of
ntrace for generating automated reports.
1-3

NightTrace RT User’s Guide
1-4

Event Logging and Capture
Part I - Event Logging and Capture

Part I Event Logging and Capture

Chapter 2 Using the NightTrace Logging API .. 2-1

Chapter 3 Capturing User Events with ntraceud ... 3-1

Chapter 4 Capturing Kernel Events with ntracekd .. 4-1

Chapter 5 Performance Tuning.. 5-1

NightTrace RT User’s Guide

2
Chapter 2Using the NightTrace Logging API

2
2

2 fa

This chapter describes language-specific considerations for using NightTrace with user
applications.

Sample programs using these functions are also provided (see NightTrace Logging API
Examples).

Language-Specific Source Considerations 2

NightTrace applications can be written in C, C++, Ada, or Fortran.

The NightTrace Logging API can be used with the following compilers:

- Concurrent Ada (MAXAda)

- Concurrent Fortran 77

- GNU C/C++

- GNU Fortran

- Intel C/C++

- Intel Fortran

For your applications to trace events, you must edit your source code and insert Night-
Trace library routine calls. This is called instrumenting your code. Before you begin this
task, read the following section that applies to the language in which your application is
written.

C 2

NightTrace applications written in C or C++ include the NightTrace header file
/usr/include/ntrace.h with the following line:

#include <ntrace.h>

The ntrace.h file contains the following:

• Function prototypes for all NightTrace library routines

• Return values for all NightTrace library routines

• Macros (described in “Disabling Tracing” on page 2-25)
2-1

NightTrace RT User’s Guide
The library routine return values identify the type of error, if any, the NightTrace routine
encountered.

Programs that are multi-thread can also be traced with the NightTrace library routines. For
multi-thread programs, a thread identifier is stored in each trace event, uniquely identify-
ing which thread was running at the time the trace event was logged.

Important

To fully utilize the features of NightTrace with multi-threaded
applications, additional considerations must be taken into account.
See the description of “Threads and Logging” on page 2-26 for
more information.

Minimally, a C or C++ program can log trace points using the following sequence of
library routine invocations:

trace_begin(“file”,NULL); // Called once
...
trace_event(11,2) // Log Event ID 11 with argument 2

Fortran 2

All NightTrace library routines return INTEGERS, but because they begin with a “t”, For-
tran implicitly types them as REAL. You must include the NightTrace-provided file
/usr/include/ntrace_.h or explicitly type them as INTEGER so that return values
are interpreted correctly.

Minimally, a Fortran program can log trace points using the following sequences of library
calls:

call trace_begin(“data”,0) (called once)
...
call trace_event(11)

Ada 2

Ada applications can access the NightTrace library routines via the Ada package
night_trace_bindings which is included with the MAXAda product. The bindings
can be found in the bindings/general environment in the source f i le
night_trace.a.

 The night_trace_bindings package contains the following:

• An enumeration type consisting of the return values for all NightTrace
library routines
2-2

Using the NightTrace Logging API
• The bindings that permit Ada applications to call the C routines in the
NightTrace library and to link in the NightTrace library

Many of the NightTrace functions have been overloaded as procedures. These procedures
act as the corresponding functions, except they discard any error return values.

Ada programs that use tasking can also be traced with the NightTrace library routines. For
multitasking programs, an Ada task identifier is stored in each trace event, uniquely
identifying which Ada task was running at the time the trace event was logged.

For more information on Ada, see the section titled “NightTrace Binding” in the MAXAda
for Linux Reference Manual.

Inter-Process Communication and Library Routines 2

Your application logs trace events to a shared memory area. A user daemon copies trace
events from shared memory buffers to the trace event file or to the NightTrace graphical
analysis tool. The relationship between your application and the user daemon and the
sequence of library calls needed to maintain this relationship appears in Figure 2-1.
2-3

NightTrace RT User’s Guide
Figure 2-1. Inter-Process Communication and Library Routines

Understanding NightTrace Library Calls 2

There are C, Ada, and Fortran versions of each NightTrace library routine. These routines
perform the following functions:

• Initialize a tracing session

• Open the current thread for trace event logging

• Log trace events to shared memory

• Enable and disable specified trace events

Parent processes follow this sequence:

trace_begin()
 log trace events

trace_end()

Child processes and threads follow this sequence:

trace_open_thread()
log trace events
trace_close_thread()

Process A

Thread 1

Thread 2

Process B

Child of B Shared
Memory
Buffer

 user

Child of B

Process C

Task 1

Task 2

daemon

Trace File

ntrace GUI
or
2-4

Using the NightTrace Logging API
• Explicitly notify the daemon to copy shared memory to disk

• Control how diagnostics are generated

• Close the current thread for trace event logging

• Terminate a tracing session

The next sections describe these routines in detail.
2-5

NightTrace RT User’s Guide
trace_begin 2

The trace_begin routine initializes the tracing session and acquires resources for your
process.

SYNTAX

C: int trace_begin(char *trace_file,
 ntconfig_t * config);

Fortran: integer function trace_begin(trace_file, config)
character *(*) trace_file
integer config(NTC_SIZE)

Ada: function trace_begin(
trace_file : string;
num_buffers : integer; -- default is 8
buffer_length : integer; -- default is 32768
lock_pages : boolean := true;
clock : ntclock_t :=

 NT_USE_ARCHITECTURE_CLOCK;
shmid_perm : integer := 8#666#;
inherit : boolean := true)

return ntrace_error;

PARAMETERS

trace_file the user daemon logs trace events to an output file, trace_file. When
you invoke the user daemon, you must specify this file’s name. For
the user daemon to log your process’ trace events to this file, the
trace event file parameter in your trace_begin call must corre-
spond to the key file value on the daemon invocation. The names do
not have to exactly match textually, but they do have to refer to the
same actual pathname; for example, one path name may begin at
your current working directory and the other may begin at the root
directory. When a user daemon is sending trace data directly to the
NightTrace graphical analysis tool, this file name serves only a han-
dle so that the user daemon and the application can communicate --
no data is transferred to the file in this case.

config For C, either a NULL pointer, in which case the default settings are
used, or a pointer to a ntconfig_t structure.

For Ada, the individual members of the structure are supplied
directly as parameters to the routine, with appropriate default values.
Both the user application and the user daemon associated with it
must agree on the configuration settings (or indicate that the other’s
settings may be preferred).

For Fortran, the config record must be represented by an array of
2-6

Using the NightTrace Logging API
NTC_SIZE integer items. Member of the array must be provided as
described below.

The following describe the individual parameters:

C: ntc_version
Fortran: config(ntc_version)

The value of the NTC_VERSION macro from ntrace.h

C: ntc_lock_pages
Ada: lock_pages
Fortran: config(ntc_lock_pages)

One of the following values: ntp_default, which specifies that page
locking should default; ntp_lock, which specifies that critical pages
are to be locked in memory; or ntp_no_lock, which specifies that crit-
ical pages shall not be locked in memory. ntp_default does not
request page locking, but does conflict with a user daemon configu-
ration setting of ntp_lock or ntp_no_lock.

C: ntc_clock
Ada: clock
Fortran: config(ntc_clock)

Specifies which clock to use as a timing source. This value must be
NT_USE_ARCHITECTURE_CLOCK o r
NT_USE_RCIM_TICK_CLOCK. The user daemon default value is
NT_USE_ARCHITECTURE_CLOCK.

C: ntc_shmid_perm
Ada: shmid_perm
Fortran: config(ntc_shmid_perm)

Specifies the permissions to use when creating the shared memory
segment. The user daemon default value is 0666.

C: ntc_daemon_preferred
Ada: inherit
Fortran: config(ntc_daemon_preferred)

When set to TRUE, this parameter causes conflicts between the con-
figuration as specified by the user and by the corresponding user dae-
mon to be resolved in favor of the daemon. Otherwise, conflicts will
be resolved in favor of the first configuration that executes, which
w i l l c a u s e t h e s u b s e q u e n t u s e r d a e m o n i n v o c a t i o n o r
trace_begin call to fail.

C: ntc_num_buffers, ntc_buffer_length
Ada: num_buffers, buffer_length
Fortran: config(ntc_num_buffers), config(ntc_buffer_length)

These two parameters define the amount of memory used to hold
trace events. The user daemon configuration defaults to 8 buffers
2-7

NightTrace RT User’s Guide
which individually hold 32768 events. The values as specified here
will be rounded up to the closest power of two. The units of
ntc_buffer_length are in units of minimally-sized events. Some trace
event interfaces with additional user-specified arguments require
additional space. The default daemon values for these fields are 8
buffers of length32768.

C: ntc_daemon_wait_usec
Fortran: config(ntc_daemon_wait_usec)

Specifies the number of microseconds the user daemon should pause
between busy-wait contention for control of the shared memory buff-
ers when flushing buffers to the output device. The user daemon
configuration for this parameter defaults to 100 us. This value
should be kept relatively short to prevent data loss if massive user
application trace activity prevents the daemon from flushing the
shared memory buffers.

C: ntc_reserved
Fortran: config(ntc_reserved)

These parameters are reserved for future use; currently, they must be
set to zero to proper future operation.

DESCRIPTION

The trace_begin routine performs the following operations:

• Verifies that the version of the NightTrace library linked with the
application is compatible with the version used by the user daemon if
it is already running

• Verifies the supplied configuration settings are not in conflict with a
pre-existing daemon or defines the configuration with these settings
if the user daemon does not yet exist.

• Verifies that the RCIM synchronized tick clock is counting if it was
selected as the timestamp source

• Attaches the shared memory buffer (after creating it if needed)

• Locks critical NightTrace library routine pages in memory as
directed

• Initializes trace event tracing in this process

A process that results from the execve(2) system service does not inherit a trace
mechanism. Therefore, if that process is to log trace events, it must initialize the
trace with trace_begin. Processes that result from a fork in a process that has
already initialized the tracing session need not call trace_begin.

The trace_begin routine must be called only once per parent process (unless an
intervening trace_end call has been made).
2-8

Using the NightTrace Logging API
RETURN VALUES

Upon successful operation, the trace_begin routine returns NTNOERROR or
NTLISTEN; the latter in the case where no daemon has yet been started. A list of
trace_begin return codes follows.

[NTNOERROR] A daemon has already been started that matches the filename
passed as key_file. The application can begin to log trace
events after calling trace_open_thread.

[NTLISTEN] All operations where successful, but no user daemon matching
the filename passed as key_file could be found. The application
can continue to make NightTrace API calls but attempts to log
events will fail until a daemon is started, at which point log-
ging of events will succeed.

[NTALREADY] The application has already initialized the trace without an
intervening trace_end. Tracing can continue in spite of this
error. Solution: Remove redundant trace_begin calls.

[NTBADVERSION] The calling application is linked with the static NightTrace
library and the static library is not compatible with the Night-
Trace library being used by the user daemon. Solution: Relink
the application with the static library version which matches
the library version being used by the daemon.

[NTMAPCLOCK] The selected event timestamp source could not be attached.
Solution: If read access is lacking, see your system administra-
tor.

This can also occur if the RCIM synchronized tick clock is
selected as the event timestamp source but the tick clock is not
counting. Solution: Start the synchronized tick clock by using
the clock_synchronize(1M) command and restart the
application.

[NTPERMISSION] The calling application lacks permission to attach the shared
memory buffer. Solution: Make sure that the same user who
started the user daemon is the current user logging trace events
in the application.

[NTPGLOCK] Permission to lock the text and data pages of the NightTrace
library routines was denied. If the user is not privileged to lock
pages, see your system administrator or set ntc_lock_pages to
FALSE.

[NTNOSHMID] This can occur if the size of the shared memory buffer exceeds
the system limits or the shared memory buffer already exists
but the size required by num_buffers and ntc_buffer_length
parameters exceeds the current size. To increase the system
limits on shared memory, adjust the kernel.shmmni, ker-
nel.shmall, and kernel.shmmax parameters using systcl(8).
Use ipcrm(1) to remove the existing shared memory seg-
ment if it is not being used by another application.
2-9

NightTrace RT User’s Guide
SEE ALSO

Related routines include: trace_open_thread, trace_end
2-10

Using the NightTrace Logging API
trace_open_thread 2

The trace_open_thread routine associates the current Ada task or C thread with a
user-specified name. Use of this library routine is optional. By default, a trace thread con-
text called “main” is associated with the main program. You can override this name by
calling trace_open_thread from the main program.

SYNTAX

C: int trace_open_thread(char *thread_name);

Fortran: integer function trace_open_thread(thread_name)
character *(*) thread_name

Ada: function trace_open_thread(
thread_name : string
)
return ntrace_error;

PARAMETERS

thread_name
NightTrace’s graphical displays and textual summary information
i n d i c a t e w h i c h t h r ea d s l o g g ed t r a c e e v e n t s . I f t h e
trace_open_thread thread name is null, the ntrace display
utility uses an internal thread ID as a label in these displays.

Naming your threads can make the displays much more readable.
trace_open_thread lets you associate a meaningful character
string name with the current threads’ more cryptic numeric ID. If you
provide a character string as the thread name, the ntrace display
utility uses it as a label in its displays. Because ntrace may be
unable to display long strings in the limited screen space available,
keep thread names short.

Thread names must begin with an alphabetic character and consist
solely of alphanumeric characters and the underscore. Spaces and
punctuation are not valid characters. The following thread names are
reserved and cannot be specified to this routine: ALL, NONE.

DESCRIPTION

For multi-threaded applications, C threads and Ada tasks automatically inherit the
current thread name of their parent when they are created. You can create additional
thread names by calling trace_open_thread once per thread or task. Events
subsequently generated by these threads or tasks are marked with the specified
name, making event analysis much more meaningful.
2-11

NightTrace RT User’s Guide
Important

In order to identify the thread that logged a trace events in
multi-threaded applications, you must register your threads with
c a l l s t o trace_register_thread o r
trace_open_thread or create your threads with the
Pthread_create wrapper rou t ine p rov ided in the
/usr/lib/libntrace_thr.a library. See the description of
“Threads and Logging” on page 2-26 for more information.

RETURN VALUES

The trace_open_thread routine returns a zero value (NTNOERROR) on suc-
cessful completion. Otherwise, it returns a non-zero value to identify the error con-
dition. A list of trace_open_thread error codes follows.

[NTINIT] The NightTrace library routines were not initialized or they
were initialized but no user daemon has yet been initiated.

Ensure a trace_begin call precedes this call. If the preced-
ing trace_begin call returned NTLISTEN, then a value of
NTINIT is not a failure condition and once a user daemon is
started, subsequent attempts at logging events will succeed.

[NTINVALID] An invalid thread name was specified.

[NT_ALREADY] The thread-aware version of the NightTrace logging API
library, libntrace_thr.a, was not used when linking or .
See the description of “Threads and Logging” on page 2-26 for
more information.

SEE ALSO

Related routines include: trace_begin, trace_close_thread.

trace_event and Its Variants 2

The following routines log an enabled trace event and possibly some arguments to the
shared memory buffer.

SYNTAX

C: int trace_event (int ID);

int trace_event_arg (int ID, int arg);
int trace_event_three_arg (int ID,int arg1,int arg2,int arg3);
int trace_event_four_arg(int ID,int arg1,int arg2,int arg3,int
arg4);

int trace_event_long (int ID, long arg);
int trace_event_two_long (int ID, long arg1, long arg2);
2-12

Using the NightTrace Logging API
int trace_event_flt (int ID, float arg);
int trace_event_two_flt (int ID, float arg1, float arg2);

int trace_event_dbl (int ID, double arg);
int trace_event_two_dbl (int ID, double arg1, double arg2);

int trace_event_long_dbl (int ID, long double arg);

Fortran: integer function trace_event (ID)
integer ID

integer function trace_event_arg (ID, arg)
integer function trace_event_three_arg (ID, arg1, arg2, arg3)
integer function trace_event_four_arg (ID,arg1,arg2,arg3,arg4)
integer ID, arg, arg1, arg2, arg3, arg4

integer function trace_event_flt (ID, arg)
integer function trace_event_two_flt (ID, arg1, arg2)
integer ID
real arg, arg1, arg2

integer function trace_event_dbl (ID, arg)
integer function trace_event_two_dbl (ID, arg1, arg2)
integer ID
double precision arg , arg1, arg2

Ada: type event_type is range 0.4095;

(procedures)
procedure trace_event (ID : event_type);

procedure trace_event (ID : event_type; arg : integer);

procedure trace_event (ID : event_type; arg : float);

procedure trace_event (

ID : event_type;
arg1 : float; arg2 : float
);

procedure trace_event (ID : event_type; arg : long_float);

procedure trace_event (

ID : event_type;
arg1 : long_float; arg2 : long_float
);

procedure trace_event (

ID : event_type;
arg1 : integer; arg2 : integer;
arg3 : integer; arg4 : integer
);
2-13

NightTrace RT User’s Guide
(functions)
function trace_event (ID : event_type)
return ntrace_error;

function trace_event (ID : event_type; arg : integer)
return ntrace_error;

function trace_event (ID : event_type; arg : float)
return ntrace_error;

function trace_event (

ID : event_type;
arg1 : float; arg2 : float
)

return ntrace_error;

function trace_event (ID : event_type; arg : long_float)
return ntrace_error;

function trace_event (

ID : event_type;
arg1 : long_float; arg2 : long_float
)

return ntrace_error;

function trace_event (

ID : event_type;
arg1 : integer; arg2 : integer;
arg3 : integer; arg4 : integer
)

return ntrace_error;

PARAMETERS

ID Each trace event has a user-defined trace event ID, ID. This ID is a
valid integer in the range reserved for user trace events (0-4095,
inclusive). See “Pre-Defined Strings Tables” on page 6-17 for more
information about trace event IDs.

argN Sometimes it is useful to log the current value of a variable or expres-
sion, arg, along with your trace event. The trace event logging rou-
tines provide this capability. They differ by how many and what
types of numeric arguments they accept. If you want the ntrace
display utility to display these trace event arguments in anything but
decimal integer format, you can enter the trace event in an event-map
file. See “Event Map Files” on page 6-11 for more information on
2-14

Using the NightTrace Logging API
event-map files and formats. Alternatively, you could call the for-
mat function. See “format()” on page 11-106 for details.

DESCRIPTION

A trace point is a place in your application’s source code where you call a trace
event logging routine. Usually this location marks a line that is important to debug-
ging or performance analysis.

TIP:
To save time re-editing, recompiling, and relinking your application, consider begin-
ning with many trace points in the source code. You can dynamically enable or dis-
able specific trace events.

Some typical trace points include the following:

• Suspected bug locations

• Process, subprogram, or loop entry and exit points

• Timing points, especially for clocking I/O processing

• Synchronization points for multi-process interaction

• Endpoints of atomic operations

• Endpoints of shared memory access code

Call one trace event logging routine at each of the trace points you have selected.
When you call this routine, it writes the trace event information (including timings
and any arguments) to a shared memory buffer. By default, if this write fills the
shared memory buffer or causes the buffer-full cutoff percentage to be reached, the
user daemon wakes up and copies the trace event to the trace event file on disk.

By convention, each trace event logging invocation should log a different trace
event ID number. This lets you easily identify which source line logged the trace
event, how often that source line executed, and what order source lines executed in.
However, it is sometimes useful to log the same trace event ID in multiple places.
This makes it possible to group trace events from related, but not identical, activi-
ties. In this case, a change of trace event ID usually separates or subdivides groups.

Probably the most common use of trace events is to identify states. Typically, two
different trace event IDs delimit the boundaries of a state. Most applications log
recurring states with different time gaps (from the end of one instance of a state to
the start of another) and different state durations (from the start of one instance of a
state to its end).

TIP:
Consider putting related trace event IDs within a range. Library routines and user
daemon options let you manipulate trace events by using trace event ID ranges.

By default, all trace events are enabled for logging. The NightTrace library contains
routines that allow you to selectively or globally enable or disable trace events. The
user daemon has options that provide similar control. Attempting to log a disabled
trace event has no effect. See “trace_enable, trace_disable, and Their Variants” on
page 2-17 for more information.
2-15

NightTrace RT User’s Guide
TIP:
Consider using symbolic constants instead of numeric trace event IDs. This would
make your calls to NightTrace routines more readable.

Once your application logs all of its trace events, you can look at them and their
arguments graphically with State Graphs, Event Graphs, and Data Graphs in the
ntrace display utility. See “State Graph” on page 10-7, “Event Graph” on page
10-6, and “Data Graph” on page 10-8 for more information about these display
objects.

RETURN VALUES

These routines return a zero value (NTNOERROR) on successful completion. Other-
wise, they return a non-zero value to identify the error condition. A list of error
codes for these routines follows.

[NTINVALID] An invalid trace event ID has been supplied. Solution: Use
trace event IDs only in the range 0-4095, inclusive.

[NTINIT] The NightTrace library routines were not initialized or they
were initialized but no user daemon has yet been initiated.
Ensure a trace_begin call precedes the trace event logging
routine call. Once a user daemon is started, subsequent
attempts at logging events will succeed.

For multi-threaded applications, if the thread-aware version of
the NightTrace logging API library, libntrace_thr.a, was
used when linking and the calling thread was not created with
the Pthread_create NightTrace API call this error will
occur and all subsequent attempts to log trace events with this
thread will fail. See the description of “Threads and Logging”
on page 2-26 for more information.

[NTLOSTDATA] The trace event was lost because the shared memory buffers
were full. This can occur if the user daemon cannot empty the
shared memory buffer quickly enough. Increase the priority of
the user daemon and/or schedule it on a CPU with less activity.
Additionally, the size of the shared memory buffers can be
increased using the --num_bufs and --buflen options to
ntraceud, the User Event Buffer settings on the User
Trace tab of the Daemon Definit ion dialog in ntrace
tool, or the ntc_num_buffers and ntc_buffer_length fields of the
ntconfig_t configuration buffer passed to trace_begin.

SEE ALSO

Related routines include:
trace_flush, trace_trigger,
trace_enable, trace_enable_range,
trace_enable_all, trace_disable,
trace_disable_range, trace_disable_all
2-16

Using the NightTrace Logging API
trace_enable, trace_disable, and Their Variants 2

By default, all trace events are enabled for logging to the shared memory buffer. The
trace_disable, trace_disable_range, and trace_disable_all routines
respectively make your application ignore requests to log one or more trace events. The
trace_enable, trace_enable_range, and trace_enable_all routines
respectively make your application notice previously disabled requests to log one or more
trace events.

SYNTAX

C: int trace_enable (int ID);

int trace_enable_range (int ID_low, int ID_high);

int trace_enable_all ();

int trace_disable (int ID);

int trace_disable_range (int ID_low, int ID_high);

int trace_disable_all ();

Fortran: integer function trace_enable (ID)
integer ID

integer function trace_enable_range (ID_low, ID_high)
integer ID_low, ID_high

integer function trace_enable_all ()

integer function trace_disable (ID)
integer ID

integer function trace_disable_range (ID_low, ID_high)
integer ID_low, ID_high

integer function trace_disable_all ()

Ada: type event_type is range 0..4095;

(procedures)
procedure trace_enable (ID : event_type);

procedure trace_enable (

ID_low : event_type; ID_high : event_type
);

procedure trace_enable_all;

procedure trace_disable (ID : event_type);
2-17

NightTrace RT User’s Guide
procedure trace_disable (

D_low : event_type; ID_high : event_type
);

procedure trace_disable_all;

(functions)
function trace_enable (ID : event_type)
return ntrace_error;

function trace_enable (

ID_low : event_type; ID_high : event_type
)

return ntrace_error;

function trace_enable_all

return ntrace_error;

function trace_disable (ID : event_type)
return ntrace_error;

function trace_disable (

ID_low : event_type; ID_high : event_type
)

return ntrace_error;

function trace_disable_all

return ntrace_error;

PARAMETERS

ID Each trace event has a user-defined trace event ID, ID. This ID is a
valid integer in the range reserved for user trace event IDs (0-4095,
inclusive). See “trace_event and Its Variants” on page 2-12 for more
information.

ID_low It is possible to manipulate groups of trace event IDs by specifying a
range of trace event IDs. ID_low is the smallest trace event ID in the
range.

ID_high It is possible to manipulate groups of trace event IDs by specifying a
range of trace event IDs. ID_high is the largest trace event ID in the
range.

DESCRIPTION

The enable and disable library routines allow you to select which trace events are
enabled and which are disabled for logging. A discussion of disabling trace events
appears first because initially all trace events are enabled.

Sometimes, so many trace events that it is hard to understand the ntrace display.
Occasionally you know that a particular trace event or trace event range is not inter-
esting at certain times but is interesting at others. When either of these conditions
exist, it is useful to disable the extraneous trace events. You can disable trace events
2-18

Using the NightTrace Logging API
temporarily, where you disable and later re-enable them. You can also disable them
permanently, where you disable them at the beginning of the process or at a later
point and never re-enable them.

NOTE

These routines enable and disable trace events in all processes that
rely on the same user daemon to log to the same trace event file.

All disable library routines make your application start ignoring requests to log trace
event(s) to the shared memory buffers. The disable routines differ by how many
trace events they disable. trace_disable disables one trace event ID.
trace_disable_range disables a range of trace event IDs, including both
range endpoints. trace_disable_all disables all trace events. Disabling an
already disabled trace event has no effect.

All enable library routines let you re-enable a trace event that you disabled with a
disable library routine or user daemon. The effect is that your application resumes
noticing requests to log the specified trace event to the shared memory buffers. The
enable routines differ by how many trace events they enable. trace_enable
enables one trace event ID. trace_enable_range enables a range of trace
event IDs, including both range endpoints. trace_enable_all enables all trace
events. Enabling an already enabled trace event has no effect.

TIP:
Consider invoking the user daemon with events disabled instead of calling the
trace_enable and trace_disable routines. Using these options saves you
from re-editing, recompiling and relinking your application.

TIP:
If you want to log only a few of your trace events, disable all trace events with
trace_disable_all and then selectively enable the trace events of interest.

RETURN VALUES

The trace_disable, trace_disable_range, trace_disable_all,
trace_enable, trace_enable_range, and trace_enable_all routines
return a zero value (NTNOERROR) on successful completion. Otherwise, they return
a non-zero value to identify the error condition. A list of error codes for these rou-
tines follows.

[NTINIT] The NightTrace library routines were not initialized. Solution:
Be sure a trace_begin call precedes the call to the disable
or enable routine.

[NTINVALID] An invalid trace event ID has been supplied. Solution: Use
trace event IDs only in the range 0-4095, inclusive.

SEE ALSO

Related routines include:
trace_event and its variants.
2-19

NightTrace RT User’s Guide
trace_flush and trace_trigger 2

The trace_flush and trace_trigger routines asynchronously wake the user dae-
mon and direct it to copy trace events from the shared memory buffers to the trace event
file on disk. Note: These routines do not wait for the copy to complete.

SYNTAX

C: int trace_flush();
int trace_trigger();

Fortran: integer function trace_flush()
integer function trace_trigger()

Ada:
(procedures)

procedure trace_flush;
procedure trace_trigger;

(functions)
function trace_flush
return ntrace_error;

function trace_trigger
return ntrace_error;

DESCRIPTION

When the user daemon is idle, it sleeps. The process of copying trace events from
the shared memory buffers to a trace event file is called flushing the buffers. The
user daemon wakes up and flushes when any of these conditions exist:

• At least one of the individual buffers is filled with trace events

• Your application calls trace_flush, trace_trigger, or
trace_end

• ntraceud is invoked with the --flush-now option

• The NightTrace graphical analysis tool requests a flush for immedi-
ately analysis of the latest trace events

TIP:
trace_trigger is identical to trace_flush, except trace_trigger works
only in buffer-wraparound mode. Cal l trace_trigger instead of
trace_flush so that only buffer-wraparound’s performance is affected.

When you run in buffer-wraparound mode, you are telling NightTrace to intention-
ally discard older or less-vital trace events when the shared memory buffer gets full.
In buffer-wraparound mode, you must explicitly call trace_flush or
trace_trigger. Only then, does the user daemon copy the remaining trace
events from the shared memory buffer to the trace event file. However, do not call
trace_flush or trace_trigger too often or you will reduce the effectiveness
2-20

Using the NightTrace Logging API
of this mode. See “ntraceud Options” on page 3-3 for more information on
buffer-wraparound mode.

RETURN VALUES

The trace_flush and trace_trigger routines return a zero value
(NTNOERROR) on successful completion. Otherwise, they return a non-zero value
to identify the error condition. A list of trace_flush and trace_trigger
error codes follows.

[NTFLUSH] A failure occurred while attempting to flush the shared mem-
ory buffer. Solution: Verify the status of the user daemon; if
necessary, restart it and rerun the trace.

SEE ALSO

Related routines include:
trace_event and its variants
2-21

NightTrace RT User’s Guide
trace_close_thread 2

The trace_close_thread routine disables trace event logging for the current thread
or process. Use of this routine is not strictly required, unless a subsequent
trace_open_threadcall is desired.

SYNTAX

C: int trace_close_thread;

Fortran: integer function trace_close_thread

Ada: function trace_close_thread return
ntrace_error;

DESCRIPTION

Terminate tracing for the calling thread or Ada task. Subsequent calls to
trace_event or trace_event_arg and its variants will fail unless an inter-
vening call to trace_open_thread is made.

RETURN VALUES

The trace_close_thread routine returns a zero value (NTNOERROR) on suc-
cessful completion. Otherwise, it returns a non-zero value to identify the error con-
dition. A list of trace_close_thread error codes follows.

[NTINIT] The NightTrace library routines were not initialized. Solution:
Call trace_close_thread only once if you previously
called trace_open_thread.

SEE ALSO

Related routines include:trace_open_thread, trace_end
2-22

Using the NightTrace Logging API
trace_end 2

The trace_end routine frees resources and terminates the trace session in your process.
Use of this routine is not strictly necessary, since all tracing resources are automatically
freed when the application exits. However, for applications that may continue to execute
but have no need for subsequent tracing, calling this routine is appropriate.

SYNTAX

C: int trace_end;

Fortran: integer function trace_end

Ada: function trace_end
return ntrace_error;

DESCRIPTION

This routine performs the following operations:

• Terminates trace event tracing in this process

• Flushes trace events from the shared memory buffer to the trace
event file

• Detaches the shared memory buffer

• Notifies the user daemon that the current process has finished log-
ging trace events

RETURN VALUES

The trace_end routine returns a zero value (NTNOERROR) on successful comple-
tion. Otherwise, it returns a non-zero value to identify the error condition. A list of
trace_end error codes follows.

[NTFLUSH] A failure occurred while attempting to flush the shared mem-
ory buffer. Solution: Verify the status of the user daemon; if
necessary, restart it and rerun the trace.

[NTNODAEMON] There is no user daemon with a trace event file name that
matches the one on the trace_begin call attached to the
shared memory region. This condition is not always detect-
able. Solution: Use the ntrace display utility to analyze
your logged trace events.

SEE ALSO

Related routines include:trace_begin, trace_close_thread
2-23

NightTrace RT User’s Guide
trace_diag_mode 2

The trace_diag_mode routine controls the generation of diagnostics for critical Night-
Trace API routines.

The NightTrace API diagnostic routine is called when critical errors occur for some Night-
Trace API routines if the diagnostic mode is set to TRUE (on).

SYNTAX

C: void trace_diag_mode (int on);

Fortran: external trace_diag_mode

Ada: procedure trace_diag_mode;

DESCRIPTION

Specify a zero value to set the diagnostic mode to FALSE (off) or a non-zero value
to set it to TRUE (on).

T h e N i g h t Tra c e A P I d i a g n o s t i c r o u t i n e m a y b e c h a n g e d v i a t h e
trace_diag_func routine.

Additionally, setting the NTRACE_SILENT environment variable to a non-null
value will prevent diagnostics routines from being called, regardless of the diagnos-
tic mode setting.

SEE ALSO

Related routines include trace_diag_func.
2-24

Using the NightTrace Logging API
trace_diag_func 2

The trace_diag_func routine replaces the default NightTrace API diagnostic routine
with one supplied with the function invocation.

SYNTAX

C: void trace_diag_mode (void(*func)(char*,int));

DESCRIPTION

The specified function is invoked when critical errors occur for some NightTrace
API routines if the trace diagnostic mode is set to TRUE.

NOTE

Setting the NTRACE_SILENT environment variable to a non-null
value will prevent diagnostics routines from being called, regard-
less of the diagnostic mode setting.

SEE ALSO

Related routines include trace_diag_mode.

Disabling Tracing 2

There are four ways to disable tracing in your application:

• For C applications that include /usr/include/ntrace.h, you must
recompile your application with the -DNNTRACE preprocessor option or
insert the following preprocessor control statement before the #include
<ntrace.h>.

#define NNTRACE

The NightTrace header file, ntrace.h, contains macro counterparts for each
NightTrace library routine. When you define NNTRACE, the compiler treats your
NightTrace routine calls as if they were macro calls that always return a success
(zero) status.

• Call the trace_disable_all routine near the top of the source, recom-
pile, and relink your application. (For more information about this routine,
see “trace_enable, trace_disable, and Their Variants” on page 2-17.) If your
application calls any of the enable routines, this method is not entirely
effective.

• Start a user daemon with all events disabled.
2-25

NightTrace RT User’s Guide
• Do not start a user daemon.

The trace library routines have been highly optimized to have minimal overhead,
especially when no user daemon has been initiated.

Threads and Logging 2

In order to distinguis between multiple threads in a multi-threaded application, the follow-
ing steps must be taken:

1. The application must be linked with the thread-aware version of the Night-
Trace logging API by specifying the -lntrace_thr link option.

2. Threads must be registered via calls to trace_register_thread or
trace_open_thread or be created via the Pthread_create wrap-
per function which automatically registers newly created threads.

If the thread-aware version of the library is not used or threads are not registered , calls to
log trace events from threads will succeed but cannot be distinguished from other threads
or the main thread.
2-26

Using the NightTrace Logging API
trace_register_thread 2

The trace_register_thread routine registers the calling thread with the Night-
Trace API

Registration is necessary in order to be able distinguish between threads during event
analysis.

SYNTAX

#include <ntrace_thr.h>
int trace_register_thread (void);

DESCRIPTION

Once registered, the thread’s ID can be determined in subsequent event analysis.

I n o rd e r t o a s s o c i a t e a t e x t u a l n a m e w i t h t h e c a l l i n g t h r e a d , u se
trace_open_thread instead.

Alternatively, threads created using the Pthread_create wrapper function are
automatically registered.

RETURN VALUES

The trace_register_thread routine returns a zero value (NTNOERROR) on
successful completion. Otherwise, it returns a non-zero value to identify the error
condition. A list of trace_end error codes follows.

[NT_THREAD_ERR]A failure occurred while attempting to create thread-private
data.

SEE ALSO

Related routines include trace_open_thread and Pthread_create.
2-27

NightTrace RT User’s Guide
Pthread_create 2

Th e Pthread_create f u n c t i o n i s a w ra p p e r a r o u n d t h e P O S I X
pthread_create(3) function.

This function has the same semantics and syntax as pthread_create with the addition
that the newly created thread is automaticaly registered via an implicit call to
trace_register_thread.

SYNTAX

C: int Pthread_create (pthread_t *,
pthread_attr_t *,
void *(*)(void*),
void *);

DESCRIPTION

Create a new thread and automatically register it via an implicit call to
trace_register_thread.

To associate a name with the newly created thread, you must subsequently call
trace_open_thread from the new thread.

RETURN VALUES

The return values are identical to those defined by pthread_create(3).

In the unlikely event that the thread registration fails because thread-private data
cannot be created, the registration is skipped.

SEE ALSO

Related routines include trace_open_thread.

Compiling and Linking 2

You must link in the NightTrace library so that your application can initialize its trace
mechanism and log trace events.

For single-threaded applications, specify the /usr/lib/libntrace.a library.

For multi-threaded applications, specify the /usr/lib/libntrace_thr.a library.
2-28

Using the NightTrace Logging API
C Compilation and Linking 2

Single-threaded example:

$ cc app.c -lntrace

Multi-threaded example:

$ cc app.c -lntrace_thr -lpthread

See “NightTrace Logging API Examples” on page C-1 for more demonstrative examples.

Fortran Compilation and Linking 2

RedHawk Linux:

$ cf77 app.f -lntrace

or

$ g77 app.f -lntrace

See “NightTrace Logging API Examples” on page C-1 for more demonstrative examples.

Ada Example 2

For a complete example on accessing the NightTrace library routines from an Ada appli-
cation, see the section titled “NightTrace Binding” in the MAXAda for Linux Reference
Manual.

2

2-29

NightTrace RT User’s Guide
2-30

3
Chapter 3Capturing User Events with ntraceud

3
3
3

A user daemon is required in order to capture trace events logged by user applications.
There are two methods for controlling user daemons:

• Use the graphical user interface provided in the ntrace dialog as
described in “Daemon Definition Dialog” on page 7-57.

• Use the command line tool ntraceud

The interactive interface is often more convenient and easier to use and additionally offers
concurrent viewing of trace events while the application continues to log trace data; this
optional feature is called streaming. Alternatively, the ntraceud command line tool is
useful in scripts where automation is required.

This chapter describes the ntraceud command line tool broken down into the following
topics:

• Τhe ntraceud daemon

• The default user daemon configuration

• ntraceud modes

• ntraceud options

• Invoking ntraceud

The ntraceud Daemon 3

When you start up ntraceud, it creates a daemon background process and then returns
control to the invoking program, normally the shell. The daemon creates a shared mem-
ory buffer in global memory. Your application writes trace events into this buffer, and the
daemon copies these trace events to the output device, usually a file.

You supply the name of the trace event file on your ntraceud invocation and in the
trace_begin() library call in your application. If this file does not exist, ntraceud
creates it; otherwise, ntraceud overwrites it.

A single ntraceud daemon may service several running applications or processes. Sev-
eral ntraceud daemons can run simultaneously; the system identifies them by their dis-
tinctive trace event file names. The ntraceud daemon resides on your system
under/usr/bin/ntraceud.

The daemon remains idle until one of the following conditions exist:

• One of the shared memory buffers fills
3-1

NightTrace RT User’s Guide
• You terminate execution of ntraceud

• Your application calls trace_flush(), trace_trigger(), or
trace_end()

• A subsequent invocation of ntraceud explicitly requests a flush

ntraceud Modes 3

By default, ntraceud operates in a expansive mode, continually increasing the size of
the output file as events are copied from the shared memory buffers to disk.

ntraceud also offers a file-wrap mode. This mode essentially places a limit on the max-
imum size the file can grow to. Once the limit is reached, the oldest events in the file are
overwritten.

ntraceud also offers a buffer-wrap mode. In this mode, the shared memory buffers are
filled without waking the daemon. When all buffers have been filled, the oldest events are
overwritten with the newest ones. No disk activity occurs until ntraceud is terminated,
or an explicit flush operation is requested, at which time, all buffers are copied to the out-
put file.

Both file-wrap and buffer-wrap modes may be used together.

The Default User Daemon Configuration 3

Invoking ntraceud with a trace event file argument and without any options will
attempt to start a user daemon with the default user daemon configuration. You can over-
ride defaults by invoking ntraceud with particular options. Table 3-1 summarizes these
options. Detailed descriptions of these options are described in the following section.

However, if a user application has already been initiated, it may have specified a
non-default configuration via the trace_begin() call. If the critical settings in the con-
figuration defined by the user application differ from those specified by ntraceud, then
ntraceud will fail to initialize with an appropriate diagnostic.

In the default configuration, all trace events are enabled for logging. Your application logs
trace events to the shared memory buffer. By default, an architecture-specific timing
source is utilized, which for Intel and AMD Opteron based machines is the Time Stamp
Counter (TSC register). However, the Real-Time Clock and Interrupt Module (RCIM)
can be used as a timestamp source by using the --rcim option to ntraceud (see
“ntracekd Options” on page 4-2).

ntraceud and the NightTrace library routines optionally use page locking to prevent
page faults during trace event logging.

A summary of NightTrace configuration defaults follows.
3-2

Capturing User Events with ntraceud
ntraceud Options 3

ntraceud copies trace events from shared memory buffers to the output device, which is
normally a file.

The ntraceud invocation syntax is:

ntraceud [options] trace-filename

The trace-filename parameter is required for all ntraceud invocations. When starting a
daemon, it defines the shared memory identifier that the daemon and application will use
to communicate. When requesting statistics for a running daemon or when stopping a dae-
mon, it identifies the running daemon. Finally, unless run in streaming mode, the
trace-filename defines the output file which will hold trace events as they are copied from
memory.

The command-line options to ntraceud are:

--bufferwrap
-b

Collect events in the shared memory buffers, but do not output them to the
output device until ntraceud is terminated or an explicit flush request
occurs via an ntraceud invocation or from the NightTrace Logging API.

When the shared memory buffers are completely filled, the oldest trace events
are overwritten by the newest events.

--buflen=buflen]
-Bl buflen

Sets the length of each of the shared memory buffers used by ntraceud to
buflen. The value represents the number of parameterless events that can be
stored in each buffer. The value buflen should be a power of 2 -- otherwise the

Table 3-1. NightTrace Configuration Defaults

Characteristic Default Modifying Option

Number of buffers 8 --numbufs=number

Size of each buffer 32768 raw events --buflen=len

Buffer wrap mode No wrapping --bufferwrap

Trace event file size Indefinite --filewrap=bytes

Trace events enabled for logging All --disable =ID and
--enable=ID

Page Locking No Page Locking --lock
3-3

NightTrace RT User’s Guide
value is automatically adjusted by ntraceud. Use this option in conjunction
with --numbufs to control the amount of shared memory to be used. The
default value for buflen is 32768. Note that trace_event_arg API calls
(and other similar interfaces which include parameters) consume more space
than those without parameters.

Specifying a large value may exceed the system limitation on the maximum
size of shared memory. You can adjust the system limitation by changing the
kernel.shmmax and kernel.shmall variables via the sysctl(8) command.

--cpu=cpu

Causes the daemon to run on the CPUs specified by cpu. The cpu parameter
must be a comma-separated list of logical CPUs or CPU ranges.

--disable=ID[-ID]
--enable=ID[-ID]
-d ID[-ID]
-e ID[-ID]

Disable or enable one trace event ID or a range of trace event IDs, as defined
by ID or the range ID-ID, from being logged. Any number of these options
may be specified. Upon the first invocation of ntraceud that creates the
daemon process, the first --enable option disables all other trace events.
When ntraceud is invoked subsequently to adjust status of events for the
current session, --enable options only enable the specified trace events.
By default, all trace events are enabled.

--filewrap=bytes
-fw bytes

Start the ntraceud daemon in file-wrap mode such that the maximum trace
file size will be bytes bytes. A K or M suffix indicates that the size is in kilo-
byte or megabyte units, respectively. Once the maximum size has been
reached, ntraceud overwrites the oldest trace events logged by the applica-
tion.

--flush

This option forces a flush of all shared memory buffers that contain trace
events. This is especially useful when the daemon is operating in bufferwrap
mode or ntraceud is stream data to an application linked with the Night-
Trace Analysis API when the rate of events is relatively low.

--help
-h

Display a brief description of ntraceud options to stdout and exit.

--info
-i

Display summary information about a running ntraceud daemon. The dis-
play includes information about the number of events generated, events in the
3-4

Capturing User Events with ntraceud
shared memory buffers, events written to the output device and any data loss
that has occurred.

Data loss usually occurs because your application is writing trace events to the
shared memory buffers faster than ntraceud can copy them to the
trace-event file. Limit data loss by increasing the --numbufs and
--buflen option settings or using --bufferwrap and by executing
ntraceud with urgent priority.

--join
-j

Allow the initiation of an ntraceud daemon even if a user application has
already initiated a trace session using the specified trace-filename argument.

--lock
--nolock

Specify whether critical pages are to be locked in memory or should not be
locked in memory.

--numbufs=numbufs]
-Bn numbufs

Sets the number of shared memory buffers used by ntraceud to numbufs.
The value numbufs should be a power 2 -- the value is automatically adjusted
by ntraceud if this is not the case. Use this option in conjunction with
--buflen to control the amount of shared memory to be used. The default
value of numbufs is 8.

Specifying a large value may exceed the system limitation on the maximum
size of shared memory. You can adjust the system limitation by changing the
kernel.shmmax and kernel.shmall variables via the sysctl(8) command.

--policy=pol

This option sets the scheduling policy under which the daemon will operate.
The pol parameter must be other, fifo, or rr, indicating standard interactive,
real-time first-in first-out or real-time round-robin scheduling, respectively.
By default, pol is other. Use this option in conjunction with --priority
and --cpu to adjust the scheduling attributes of ntraceud. See
sched_setscheduler(2) for more information on scheduling policies.

--priority=prio

This option sets the scheduling priority under which the daemon will operate.
The prio parameter must be an integer priority value which is consistent with
the range of priorities allowed by the associated scheduling class set via the
--policy option. By default, prio is 0 and the scheduling policy is other
w h i c h d i c t a t e s n o r m a l i n t e r a c t i v e s c h e d u l i n g . S e e
sched_setscheduler(2) for more information on scheduling priorities.
3-5

NightTrace RT User’s Guide
--quit
-q

After all processes associated with the ntraceud session defined by
trace-filename have exited or called trace_end, flush all remaining events
in the shared memory buffers, terminate the corresponding ntraceud dae-
mon, remove the corresponding shared memory identifier, and close the file.
This option causes ntraceud to wait for all processes to either exit or call
trace_end before tracing is terminated, whereas the --quit-now option
terminates the daemon without waiting.

--quit-now
-qn

Immediately flush all remaining events in the shared memory buffers, termi-
nate the corresponding ntraceud daemon, remove the corresponding shared
memory identifier, and close the file.

--rcim

Specify use of the RCIM synchronized tick clock as the timing source. This
option is useful when simultaneously capturing data from multiple systems
since the RCIM tick clock can be synchronized between systems.

--stream

This option causes binary trace data to be output to stdout. This option is
intended to provide streaming data to applications using the NightTrace Anal-
ysis API; e.g. ntraceud --stream /tmp/key | a.out. In this case,
the trace-filename specified is not modified (although it will be created if it
does not already exist).

--version
-v

Display the current ntraceud version to stdout and exit.

Invoking ntraceud 3

This section describes a few common ntraceud invocation examples. In each example,
the trace_file argument corresponds to the trace event file name you supply on your call to
the trace_begin() library routine.

Normally, your first ntraceud invocation looks something like the following sample.

ntraceud trace_file

The following invocation might be used when tuning your NightTrace configuration
because you lost trace events last time.

ntraceud --numbufs=16 --buflen=65536 trace_file
3-6

Capturing User Events with ntraceud
To eliminate any disk activity, or to run for long periods of time and only capture the latest
data, the following invocation might be used.

ntraceud --bufferwrap trace_file

To conserve disk space for long runs, the following invocation might be used.

ntraceud --filewrap=bytes trace_file

The following invocation should be used when the user application is already running and
you wish to start collecting trace data from it.

ntraceud --join trace_file

To obtain information on the status of an active daemon, the following invocation could be
used:

ntraceud --info trace_file

The following invocation waits for all user applications associated with the running
ntraceud daemon to terminate, flushes remaining trace events to the trace event file,
closes the file, removes the shared memory buffer, then terminates the running ntra-
ceud.

ntraceud --quit trace_file

Similarly, the following invocation immediately flushes remaining trace events to the
trace file, closes the file, and terminates the running ntraceud daemon. User applica-
tions can continue to run and make NightTrace Logging API calls, but no trace events will
be logged. Subsequently, a new user daemon can be initiated and trace events will start
being logged again:

ntraceud --quit-now trace_file

To provide streaming trace data to an application written using the NightTrace Analysis
API, the following information could be used:

ntraceud --stream trace_file | ./a.out

Note that in the above invocation, the trace_file parameter serves only as a handle for
communication between the daemon and the user application that is logging the events; no
data is written to the file. The --stream option instructs that the binary data stream be
redirected to stdout.
3-7

NightTrace RT User’s Guide
3-8

4
Chapter 4Capturing Kernel Events with ntracekd

4
4
4

A kernel daemon is required in order to capture trace events logged by the operating sys-
tem kernel. There are two methods for controlling kernel daemons:

• Using the graphical user interface provided in NightTrace Main Window

• Using the command line tool ntracekd

The interactive method is often more convenient and easier to use and additionally offers
concurrent viewing of trace events while the kernel continues to log trace data; this
optional feature is called streaming. Alternatively, the ntracekd command line tool is
useful in scripts where automation is required.

This chapter describes the ntracekd command line tool and consists of the following
topics:

• Τhe ntracekd daemon

• ntracekd modes

• ntracekd options

• Example ntracekd invocations

The ntracekd Daemon 4

When you initiate ntracekd, it creates a daemon background process and returns while
that daemon process executes. Once it returns to the invoking process, usually the shell,
the background process has already initiated kernel tracing.

You supply the name of the trace event output file on your ntracekd invocation. Since
the capture of kernel data can quickly consume vast quantities of disk space, the
ntracekd tool requires that you specify a limit on the size of the output file. Once the
limit is reached, older kernel data in the file will be overwritten with newer data. The
interface does allow you to specify an unlimited file size; however, this is not recom-
mended.

The ntracekd daemon resides on your system under/usr/bin/ntracekd.

ntracekd Modes 4

ntracekd essentially always operates in a file-wraparound mode, since it requires you to
put a limit on the maximum size of the output file. If the limit is reached, then kernel trac-
4-1

NightTrace RT User’s Guide
ing continues, but newer kernel events overwrite older events in the file. When viewed by
the NightTrace analyzer, the events will be appropriately displayed in chronological order.

ntracekd also offers a buffer-wraparound mode. This mode stipulates that the kernel
continues to log kernel events to its internal buffers located in kernel memory, overwriting
the oldest kernel trace events with the newest ones. No disk activity occurs until
ntracekd is terminated or an explicit flush request is made via a subsequent ntracekd
invocation, at which time, all kernel trace buffers are copied to the output file.

ntracekd Options 4

The full ntracekd invocation syntax is:

ntracekd [options] filename

The filename parameter is required for all ntracekd invocations. When starting a dae-
mon, it defines the output file. When requesting statistics for a running daemon or when
stopping a daemon, it identifies the running daemon.

The command-line options to ntracekd are:

--bufferwrap
-b

Collect events in kernel bufferwrap mode, delaying output to filename until
stopped or flushed. This delays the disk activity normally involved in copying
kernel buffers to the output file as they become full.

--cpu=cpu

Causes the daemon to run on the CPUs specified by cpu. The cpu parameter
must be a comma-separated list of logical CPUs or CPU ranges.

--events=events
-e events

Set the state for the events listed in the list events to enabled or disabled.
Events is a comma-separated list of event numbers or names preceded with a +
(meaning enabled) or - (meaning disabled). A + or - without a number or
name means enable or disable all, respectively. This option can be used after a
daemon is already running to dynamically disable or enable events.

For example, to disable all events except those representing context switches,
you could enter:

ntracekd --events=-,+schedchange

--flush

This option flushes all kernel buffers. It is particularly useful in conjunction
with the --stream option when streaming binary data to a NightTrace Anal-
ysis API application.
4-2

Capturing Kernel Events with ntracekd
--help
-H

Prints a description of the available options and exits.

--info
-i

This option can be specified to obtain statistics about a kernel daemon already
initiated by a previous ntracekd command. It prints statistics to stdout.

--kill
-k

Kill any active kernel daemon without regard to proper shutdown procedures.
This will allow subsequent kernel daemons to be initiated but data from the
previous daemon may be lost.

--policy=pol

This option sets the scheduling policy under which the daemon will operate.
The pol parameter must be other, fifo, or rr, indicating standard interactive,
real-time first-in first-out or real-time round-robin scheduling, respectively.
By default, pol is other. Use this option in conjunction with --priority
and --cpu to adjust the scheduling attributes of ntracekd. See
sched_setscheduler(2) for more information on scheduling policies.

--priority=prio

This option sets the scheduling priority under which the daemon will operate.
The prio parameter must be an integer priority value which is consistent with
the range of priorities allowed by the associated scheduling class set via the
--policy option. By default, prio is 0 and the scheduling policy is other
w h i c h d i c t a t e s n o r m a l i n t e r a c t i v e s c h e d u l i n g . S e e
sched_setscheduler(2) for more information on scheduling priorities.

--quit
-q

Stop an existing kernel daemon. Once kernel tracing has been stopped, all
remaining trace events already logged in the kernel buffers are copied to the
output file. The ntracekd command will not return until the copy is com-
plete.

--raw
-x

Disable automatic filtration of the kernel data leaving the format of the output
file as a raw kernel file. Raw kernel files can be passed directly to NightTrace
which will execute the filtration process on the fly. By default, ntracekd
filters the raw data to avoid otherwise unnecessary repetitive filtration by
NightTrace. This option is not normally used.
4-3

NightTrace RT User’s Guide
--rcim
-r

Use the RCIM tick clock as the timing source instead of the default timing
source.

--size=size
-s size

This option is required when initiating a daemon and specifies the maximum
size of the output file. size may be specified as an integer number optionally
followed by a K, M, or G, which indicates kilobytes, megabytes, or gigabytes,
respectively. If no letter is specified, the units are assumed to be in bytes. size
may also be +, which indicates that the output may grow without limit. Use of
+ is not recommended as kernel tracing can quickly consume vast quantities
of disk space.

--stream

This option causes output to be sent to stdout in binary form for use as input to
a NightTrace Analysis API application. When this option is used, the filename
parameter still required, but no data will be written to it. With --stream the
filename serves solely as a communication handle between ntracekd invo-
cations.

--verbose
-v

When this option is used in conjunction with --info, it includes the list of
enabled events.

--wait=seconds
-w seconds

Start the daemon and begin kernel tracing for seconds before stopping the dae-
mon.

--bufsize=sz
-Bs sz

This option defines the size of each kernel buffer. sz may be specified as an
integer number optionally followed by a K, M, or G, which indicates kilobytes,
megabytes, or gigabytes, respectively. If no letter is specified, the units are
assumed to be in bytes. The default size of a kernel buffer is 250000 bytes.

--numbufs=n
-Bn n

This option defines the number of kernel buffers. n must be a integer number.
The number of kernel buffers defaults to 4.
4-4

Capturing Kernel Events with ntracekd
ntracekd Invocations 4

A typical invocation of ntracekd to initiate kernel tracing would be:

> ntracekd --size=10M kernel-data

This starts a kernel trace daemon in the background and specifies a maximum size limit
for the output file kernel-data of 10 megabytes. The command returns as soon as ker-
nel tracing has begun.

To check on the status of the running daemon, the following command might be used:

> ntracekd --info kernel-data
status: running
events lost: 0
events captured: 13465
events written: 13465
events in buffer: 1493

To terminate the running daemon, the following command would be used:

> ntracekd --quit kernel-data

To initiate a daemon to capture kernel data while a user application executes, then to ter-
minate the daemon and view the data, the following sequence of commands might be
used:

> ntracekd --size=10M kernel-data
> ./a.out
> ntracekd --quit kernel-data
> ntrace kernel-data

To initiate a daemon to capture kernel data for five seconds and then terminate the daemon
and view the data, the following sequence of commands might be used:

> ntracekd --wait=5 kernel-data
> ntrace kernel-data
4-5

NightTrace RT User’s Guide
4-6

5
Chapter 5Performance Tuning

5
5
5

The NightTrace default configuration is often sufficient for most tracing needs, however,
situations with exceptionally high trace event rates or those requiring precise control over
disk activity may require adjustment. This chapter discusses the following:

• Preventing trace event loss

• Conserving disk space

• Conserving memory and accelerating ntrace

Preventing Trace Event Loss 5

By default, NightTrace copies all user trace events from the shared memory buffer to the
trace event file. This means that normally NightTrace neither discards nor loses trace
events as long as it can copy the shared memory buffers to the output device faster than
the application or kernel can fill up all remaining shared memory buffers.

NightTrace reports lost trace events in several ways:

• The --info options to ntraceud and ntracekd describe the number
of lost events

• The Daemon Control area in ntrace displays event loss counts

• NightTrace display pages include a visual indicator on the ruler, a capital L
character, indicating where event loss started to occur

• An internal trace point, NT_LOST_DATA, is included in the trace data out-
put at the point where trace events began to be lost

NOTE

Events that are overwritten in file-wrap and buffer-wrap modes
are not considered lost events and are not reported.

Daemon Scheduling Adjustment 5

The scheduling policy, priority, and CPU bias of daemons can be adjusted using the fol-
lowing methods:

• From the command line, use the run(1) command to initiate ntraceud
or ntracekd with an urgent priority and favorable scheduling policy, e.g.
5-1

NightTrace RT User’s Guide
> run -P50 -sFIFO ntraceud ...

• Invoke ntraceud and ntracekd with the --priority=P, --pol-
icy=P, and --cpu=C command line options to select scheduling priority,
policy and CPU binding.

• Select the scheduling policy, scheduling priority and CPU bias from the
Runtime tab of the Daemon Definition dialog in the ntrace tool.

Increasing Trace Buffer Size 5

The number of trace buffers and the size of trace buffers can be adjusted using the follow-
ing methods:

• Specify larger values using the --numbufs and --buflen options to
ntraceud. The default values for these options are 8 and 32768, respec-
tively.

• Specify larger values for the ntc_num_buffers and ntc_buffer_length fields
in the ntconfig_t configuration record passed to trace_begin. The
default values for these fields are 8 and 32768, respectively. Note that
these configuration values will be ignored if the corresponding user dae-
mon has already started and the value of ntc_daemon_preferred is set to
TRUE.

• Specify larger values using the --numbufs and --bufsize options to
ntracekd. The default values for these options are 4 and 50000,
respectively.

• Specify larger values for Number of Buffers and Buffer Size in the
User Trace tab of the Daemon Definition dialog in the ntrace tool.
The default values for these settings are 8 and 32768, respectively.

• Specify larger values for Number of Trace Buffers and Trace Buffer
Size using the Other tab of the Daemon Definit ion dialog in the
ntrace tool. The default values for these settings are 4 and 50000,
respectively.

When increasing user trace buffer sizes, your request may be rejected if the total trace
buffer shared memory size exceeds system limitations. You can increase the system
shared memory limits by adjusting the kernel.shmmax and kernel.shmall variables using
the systctl(8) command.

For user trace buffers, the number of buffers and buffer length must be individually a
power of two. These values are automatically increased to the next highest power of two
if this is not the case.

Since daemons are notified immediately when a single trace buffer fills, adding additional
buffers is sometimes as effective as increasing the size of buffers. The kernel and applica-
tions continue to log trace events to the next shared memory buffer while the daemon
flushes the filled buffer.
5-2

Performance Tuning
Programmatic Flushing 5

For applications which log trace events, the trace_flush API routine can be used to
cause the associated user daemon to wake up and flush all filled buffers.

Modifying the sizes and number of trace buffers as described in the previous section is
usually more effective than relying on trace_flush, since the daemon automatically
wakes and empties buffers as individual buffers are filled.

Conserving Disk Space 5

If disk space is an important consideration and you are most interested in the latest events
that are logged, use of file-wrap and buffer-wrap modes is helpful.

In buffer-wrap mode, no disk activity occurs until the daemon is terminated or an explicit
flush is requested. When all trace buffers are filled, the oldest events are overwritten by
the newest events.

In file-wrap mode, a file size maximum is imposed and the oldest events are overwritten
by the newest events when the maximum size is reached.

Both of these options can be useful when desiring to obtain trace data from a situation
which rarely appears.

For example, the following commands might be used to capture kernel and user trace data
for an extended period of time (even hours or days) until your application detects a spe-
cific situation:

> ntracekd --size=20M kernel-data
> ntraceud --filewrap=10M user-data
> ./a.out
> ntraceud --quit user-data
> ntracekd --quit kernel-data

When capturing kernel data from the ntrace graphical analysis tool and streaming the data
for immediate analysis, buffer-wrap mode is also very useful.

The Linux kernel can generated huge numbers of events on busy systems. Use of buffer-
wrap mode allows you to take snapshots of kernel data for immediate analysis or to be
saved for future analysis. Select the Buffer Wrap option on the General tab of the
Daemon Definition dialog and subsequently press the Flush button in the Daemon
Control area of the NightTrace Main window when you wish to sample kernel data.

Conserving Memory and Accelerating ntrace 5

ntrace can be a memory-intensive tool. By default, when ntrace starts up, it loads all
trace event information into memory; therefore, the more trace events in your trace event
5-3

NightTrace RT User’s Guide
file(s), the more memory ntrace uses. When you move the scroll bar on a display page
to change the displayed interval, ntrace processes all trace events between the last inter-
val and this one; if there are many trace events, the display update (or search) may be
slow. To conserve memory and accelerate ntrace:

• Log only trace events you are really interested in.

• Disable uninteresting events via the --disable option to ntraceud,
the --events option to ntracekd command lines or via the Events
tab of the Daemon Definition dialog in the ntrace tool.

• Invoke ntrace only with the trace event files that are essential to your
analysis.

• Once ntrace is launched, select a data region of interest and discard all
other events to reduce the working set size by selecting the Discard
Events... option from the Events menu of a display page.

• Operate the daemons in file-wrap or buffer-wrap modes to reduce data set
size in favor of keeping the most recent events.
5-4

Graphical Analysis
Part II - Graphical Analysis

Part II Graphical Analysis

Chapter 6 Invoking NightTrace ... 6-1

Chapter 7 The NightTrace Main Window ... 7-1

Chapter 8 Profiles .. 8-1

Chapter 9 Display Pages.. 9-1

Chapter 10 Display Objects ... 10-1

Chapter 11 Using Expressions... 11-1

Chapter 12 Kernel Tracing .. 12-1

NightTrace RT User’s Guide

6
Chapter 6Invoking NightTrace

6
6
6

NightTrace is invoked using ntrace which is normally installed in /usr/bin.

The full command syntax for ntrace is:

ntrace [-h] [--help] [--help-summary]
[-v] [--version] [-l] [--listing]
[--stats] [-n] [--notimer]
[-s val] [--start={ offset | time{ s | u } | percent% }]
[-e val] [--end={ offset | time{ s | u } | percent% }]
[-hm] [--hide-main-window] [-Xoption ...]
[-x] [--nopages]
[-u] [--use-session] [--summary=criteria]
[--verbose]
[--crash=crash_options]
[file ...]

Depending on the options and arguments specified to ntrace, NightTrace:

• loads all trace event information into memory

• checks the syntax of specifications in each file argument

• processes each file argument

• loads any display pages and their objects into memory

• presents any display pages (see Chapter 9 “Display Pages”)

• displays the NightTrace Main Window (see Chapter 7 “The NightTrace
Main Window”)

Command-line Options 6

The command-line options to ntrace are:

-h
--help

Display ntrace invocation syntax and a list of all command line options to stan-
dard output.

--help-summary

Display help specific to the --summary option to standard output.

See “Summary Criteria” on page 6-5 for more information.
6-1

NightTrace RT User’s Guide
-v
--version

Display the current version of NightTrace to standard output and exit.

--crash=crash_options

Display available kernel trace data at the time of system crash. This option is useful
if kernel tracing was running when the system crashed. It extracts kernel trace data
from the in-memory kernel buffers at the time of the crash.

The crash option parameter may be either the time-date format of the crash dump
under /var/crash/save or the full paths of the namelist and vmcore files if the default
crash path has been changed. For example:

--crash=08.02.06-19.11.47
--crash=/crashfiles/vmlinux-33,/crashfiles/vmcore-33.gz

The --crash option is only supported under Redhawk 4.1 or later and may not be
available on AMD64 systems.

-l
--listing

Display a chronological listing of all trace events and their arguments from all sup-
plied trace-event data files to standard output and exit.

The output includes the following information about a trace event:

• relative timestamp

• trace event ID

• any trace event argument(s)

• the process identifier (PID), process name, or thread name

• the CPU

The timestamp for the first trace event is zero seconds (0s). All other timestamps
are relative to the first one.

If you supply an event map file on the invocation line, NightTrace displays symbolic
trace event names instead of numeric trace event IDs, and displays trace event argu-
ments in the format you specify in the file, rather than the hexadecimal default for-
mat. For more information on event map files, see “Event Map Files” on page 6-11.

NOTE

The CPU field is only meaningful for kernel trace events; for user
trace events, the CPU field is displayed as CPU=??.
6-2

Invoking NightTrace
--stats

Display simple overall statistics about the trace-event data files to standard output
and exit.

The statistics are grouped by trace event file, with cumulative statistics for all trace
event files.

The statistics include:

• the number of trace event files

• their names

• the number of trace events logged

• the number of trace events lost

For example, the following command:

ntracekd --wait=2 kernel-data

collects kernel trace data for two seconds from the system on which it was issued
and saves the results to kernel-data (see Chapter 4 “Capturing Kernel Events
with ntracekd”).

Issuing the command:

ntrace --stats kernel-data

results in the output similar to the following:

Read 1 trace event segment timestamped with Intel TSC.
(1) Kernel trace event log file: kernel-data.
 226809 trace events plus 204596 continuation events.
 105419 trace events lost.
 2.9707482s time span, from 0.0000000s to 2.9707482s.

 226809 total events read from disk plus 204596 continuation events.
 226808 total events saved in memory; 117 events internal to ntrace.
 105419 total trace events lost.
 2.9707482s total time span saved in memory.

Detailed summary information about a trace data set is available via the
--summary option (see page 6-5).

-n
--notimer

Exclude from analysis trace events for system timer interrupts in the kernel trace
file.

-s val
--start={ offset | time{ s | u } | percent% }

Exclude from analysis trace events before the specified trace-event offset, relative
time in seconds (s) or microseconds (u), or percent of total trace events.
6-3

NightTrace RT User’s Guide
The specified values can be:

offset Load trace events after the specified trace event offset.
(See “Grid” on page 9-29 for information about trace
event offsets.)

time{ s | u } Load trace events after the specified relative time in sec-
onds (s) or microseconds (u).

percent% Load trace events after the specified percent of total trace
events. The % is required.

If you invoke NightTrace with several --start options, NightTrace pays attention
only to the last one.

-e val
--end={ offset | time{ s | u } | percent% }

Exclude from analysis trace events after the specified trace-event offset, relative
time in seconds (s) or microseconds (u), or percent of total trace events.

The specified values can be:

offset Load trace events before the specified trace event offset.

time{ s | u } Load trace events before the specified relative time in
seconds (s) or microseconds (u).

percent% Load trace events before the specified percent of total
trace events. The % is required.

If you invoke NightTrace with several --end options, NightTrace pays attention
only to the last one.

-hm
--hide-main-window

Start NightTrace with the NightTrace Main window hidden (see Chapter 7 “The
NightTrace Main Window”); only display pages are shown (see Chapter 9 “Display
Pages”).

Display pages be subsequently launched using the menu items on the Page menu
from on the NightTrace Main window (see “Page” on page 9-3).

-x
--nopages

Start NightTrace with the NightTrace Main Window (see Chapter 7 “The Night-
Trace Main Window”) but do not launch display pages automatically.

The NightTrace Main Window may be subsequently displayed using the
NightTrace Main Window... menu item on the Page menu from any display
page (see “Pages” on page 7-22).
6-4

Invoking NightTrace
-u
--use-session

Automatically load the last session used in a previous invocation of NightTrace. All
files associated with the previous session are automatically loaded.

--summary=criteria

Provide a textual summary of specified trace events using the supplied criteria.
Summary results are sent to standard output.

See “Summary Criteria” on page 6-5 for details regarding valid criteria.

--verbose

In addition to the cumulative statitistics normally output, this option provides
detailed information about each occurance of the item being summarized.

-Xoption ...

Use any standard X Toolkit command line options. See X(1).

file ...

You can invoke NightTrace with arguments such as trace event files, event map
files, page configuration files, session configuration files, or trace data segments.

See “Command-line Arguments” on page 6-10 for a description of these types of
files.

By default, when NightTrace starts up, it reads and loads all trace events from all trace
event files into memory. The --process, --start, and --end options let you pre-
vent the loading (but not the reading) of certain trace events.

For example, the following invocation displays only those trace events logged 0.5 seconds
or more after the start of the data set.

ntrace --start=0.5s kernel-data

Summary Criteria 6

The --summary option is supplied with criteria for command-line usage without ever
using the GUI to perform summaries.
6-5

NightTrace RT User’s Guide
NOTE

The --verbose option (see “--verbose” on page 6-5) pro-
vides detailed information about each occurance of the item being
summarized in addition to the cumulative statitistics normally
output.

This criteria consists of a comma-separated list of any of the following:

crit

This allows previously-defined profiles to be referenced when doing com-
mand line summaries.

To use previously-defined profiles when executing a summary from the com-
mand line, specify the desired profile name (crit) on the command line along
with the NightTrace session configuration file which contains that profile

 ev:event

Summarize the number of occurrences of the specified event.

p:process

Summarize all events associated with the specified process.

t:thread

Summarize all events associated with the specified thread.

s:call

Summarize all events associated with the entry or resumption of the specified
system call.

sl:call

Summarize all events associated with the exit or suspension of the specified
system call.

se:call

Summarize all events associated with the specified system call.

ss:call

Summarize all occurrences of a state defined by system call activity for the
specified system call.

i:intr

Summarize all events associated with the entry or resumption of the specified
interrupt intr.
6-6

Invoking NightTrace
il:intr

Summarize all events associated with the exit or interruption of the specified
interrupt intr.

ie:intr

Summarize all events associated with the specified interrupt intr.

is:intr

Summarize all occurrences of a state defined by interrupt activity for the spec-
ified interrupt intr.

e:exc

Summarize all events associated with the entry or resumption of the specified
exception exc.

el:exc

Summarize all events associated with the exit or interruption of the specified
exception exc.

ee:exc

Summarize all events associated with the specified exception exc.

es:exc

Summarize all occurrences of a state defined by exception activity for the
specified exception exc.

skip:on

Suppresses summarization for all subsequent criteria in the list (or until a
skip:off criteria is seen) if there are no summarization matches for the cri-
teria.

skip:off

Reactivates summarization for all subsequent criteria in the list (or until a
skip:on criteria is seen) if there are no summarization matches for the crite-
ria.

st:start-end

Summarize all occurrences of the state defined by the starting event start and
terminated by the ending event end.
6-7

NightTrace RT User’s Guide
These may be combined together along with tagged criteria from the Summarize
NightTrace Events dialog (see “Summarizing Statistical Information” on page 8-19) in
a comma-separated list.

Consider the following example:

ntrace --summary=ss:read,ss:alarm,ev:5,crit_0 event_file my_session

Using the trace event file event_file as the trace data source (see “Trace Event Files”
on page 6-11), NightTrace will:

1. summarize the number of occurrences of read and alarm system call
states that occur in the data source; provide information pertaining to the
duration of each state (min, max, avg, sum); and provide information
related to the gaps between each state (min, max, avg, sum)

2. summarize the number of occurences of user events with a trace event ID
of 5 as well as information about the gaps between the events (min, max,
avg)

3. perform a summary using the profile defined by crit_0 in the
my_session session file (see “Session Configuration Files” on page
6-24)

NOTE

In order to use a summary criteria tag on the command line, the
NightTrace session configuration file in which it was defined
must be specified on the command line as well (see “Session Con-
figuration Files” on page 6-24).

The following criteria may be specified alone (not part of a comma-separated list):

k[:proc]

Summarize kernel states: system calls, exceptions, and interrupts. If :proc is
provided, only those states involving process proc are summarized.

ksc[:proc]

Summarize kernel system call durations. If :proc is provided, only those sys-
tem calls involving process proc are summarized.

kexc[:proc]

Summarize kernel exception durations. If :proc is provided, only those
exceptions involving process proc are summarized.

kintr[:proc]

Summarize kernel interrupt durations. If :proc is provided, only those inter-
rupts involving process proc are summarized.
6-8

Invoking NightTrace
evt[:proc]

Summarize the number of occurrences of all events named in event map files.
User events which are not named in event map files are not shown. If :proc is
provided, only those events associated with proc are summarized.

proc

Summarize the number of events for each process.
6-9

NightTrace RT User’s Guide
Command-line Arguments 6

You can supply filenames as arguments to the ntrace command when invoking Night-
Trace. These files may contain trace event data, display page layouts, additional configu-
ration information, or information related to a previously-saved session.

These arguments can be:

• trace event files

Trace event files are captured by a user or kernel trace daemon and contain
sequences of trace events logged by your application or the operating system kernel.

See “Trace Event Files” on page 6-11 for more information.

• event map files

Event map files map short mnemonic trace event names to numeric trace event IDs
and associate data types with trace event arguments. These ASCII files are created
by the user.

See “Event Map Files” on page 6-11 for more information.

• page configuration files

Configuration files define display pages, the display objects contained within them,
string tables, and format tables. These ASCII files are usually created by Night-
Trace.

See “Configuration Files” on page 6-14 for more information.

• session configuration files

Session configuration files define a list of daemon sessions and their individual con-
figurations. In addition, session configuration files contain definitions of profiles
and search and summary configurations from previous uses of the session. Also,
session configuration files contain a list of any files the user associated with the ses-
sion, such as event map files and trace data files.

See “Session Configuration Files” on page 6-24 for more information.

• trace data segments

Trace data segments are conglomerations of all trace data saved in
a much more efficient format than raw trace event files providing
for faster initialization at startup. These files are created using the
Save Trace Segments... menu choice of the NightTrace
menu on the NightTrace Main Window (see “Save Trace Seg-
ments...” on page 7-5).

See “Trace Data Segments” on page 6-25 for more information.
6-10

Invoking NightTrace
Trace Event Files 6

Trace event files are created by user and kernel trace daemons. They consist of header
information and individual trace events and their arguments as logged by user applications
or the operating system. NightTrace detects trace event files as specified on the command
line and does the required initialization processing so that the trace events contained in the
files are available for display.

To load a trace event file, either:

• specify the trace event file as an argument to the ntrace command when
you invoke NightTrace

• Select the Open Trace File... menu option from the NightTrace menu
of the NightTrace Main window (see “NightTrace” on page 7-2) and
select the trace event file from the file selection dialog

Event Map Files 6

NightTrace does not require you to use event map files. However, if you use these file(s),
you can improve the readability of your NightTrace displays.

An event map file allows you to associate meaningful names with the more cryptic trace
event ID numbers. It also allows you to associate additional information with a trace
event including the number of arguments and the argument conversion specifications or
display formats. Although NightTrace does not require you to use event map files, labels
and display formats can make graphical NightTrace displays and textual summary infor-
mation much more readable.

To load an existing event map file, perform any of the following:

• specify the event map file as an argument to the ntrace command when
you invoke NightTrace

• select the Open Event Map File... menu item from the NightTrace
menu on the NightTrace Main Window (see “Open Event Map File...” on
page 7-5)

You can create an event map file with a text editor before you invoke NightTrace.

There is one trace event name mapping per line. White space separates each field except
the conversion specifications; commas separate the conversion specifications. NightTrace
ignores blank lines and treats text following a # as comments.

The syntax for the trace event mappings in the event map file follows:

event: ID “event_name” [nargs [conv_spec, ...]]

Fields in this file are:

event:

The keyword that begins all trace event name mappings.
6-11

NightTrace RT User’s Guide
ID

A valid integer in the range reserved for user trace events (0-4095, inclusive).
Each time you call a NightTrace trace event logging routine, you must supply
a trace event ID.

event_name

A character string to be associated with event_ID. Trace event names must
begin with a letter and consist solely of alphanumeric characters and under-
scores. Keep trace event names short; otherwise, NightTrace may be unable
to display them in the limited window space available.

The following words are reserved in NightTrace and should not be used in
uppercase or lowercase as trace event names:

- NONE

- ALL

- ALLUSER

- ALLKERNEL

- TRUE

- FALSE

- CALC

TIP

Consider giving your trace events uppercase names in event map
files and giving any corresponding profile referring to those
events the same name in lowercase. For more information about
profiles of events, see “Profile References” on page 11-107.

If your application logs a trace event with one or more numeric arguments, by default
NightTrace displays these arguments in decimal integer format. To override this default,
provide a count of argument values and one argument conversion specification or display
format per argument.

nargs

The number of arguments associated with a particular trace event. If nargs is
too small and you invoke NightTrace with the event map file and the
--listing option, NightTrace shows only nargs arguments for the trace
event.

conv_spec

A conversion specification or display format for a trace event argument.
NightTrace uses conversion specification(s) to display the trace event’s argu-
ment(s) in the designated format(s). There must be one conversion specifica-
6-12

Invoking NightTrace
tion per argument. Valid conversion specifications for displays include the fol-
lowing:

%d signed decimal integer (default)

%o unsigned octal integer

%x unsigned hexadecimal integer

%lf signed double precision, decimal floating point

For more information on these conversion specifications, see printf(3).

The following line is an example of an entry in an event map file:

event: 5 “Error” 2 %x %lf

NightTrace displays trace event 5 and labels the trace event “Error”. Trace event 5 also
has two (2) arguments. NightTrace displays the first argument in unsigned hexadecimal
integer (%x) format and the second argument in signed double precision decimal floating
point (%lf) format. (You may override these conversion specifications when you config-
ure display objects.)

You may also add or edit event map entries by selecting the Event Maps... menu option
from the Edit menu of the NightTrace Main window.

For more information on event map files, see “Pre-Defined Strings Tables” on page 6-17.
6-13

NightTrace RT User’s Guide
Configuration Files 6

A configuration file contains information related to the layout of a particular display page
and includes the configurations of all display objects that have been created on that page.
In addition, any user-defined tables that have been created for that page is also contained
in this file. Although NightTrace does not require you to use page configuration files,
using a page configuration file improves the readability of your display pages and saves
you time laying out your display pages.

A page configuration file is an ASCII file containing such definitions as:

• display page definitions (see Chapter 9 “Display Pages”)

• string table definitions (see “String Tables” on page 6-16)

• format table definitions (see “Format Tables” on page 6-20)

NOTE

Any tables found in page configuration files are imported into the
session; when the session is saved, these tables are saved with the
session. Tables are no longer saved as part of the page configura-
tion files.

NOTE

If you define a string table or format table more than once in a
configuration file, NightTrace merges the two tables; if there are
duplicate entries, values come from the last definition.

You can create, modify, save, and load configuration files from within NightTrace; how-
ever, you must use a text editor to create and modify tables in a configuration file. Night-
Trace ignores blank lines and treats text between a /* and a */ as comments in configura-
tion files; however, saving a configuration file removes your comments.

To load an existing configuration file, either:

• specify the configuration file as an argument to the ntrace command
when you invoke NightTrace

• Select the Open Config File... menu option from the NightTrace
menu of the NightTrace Main window and select the configuration file
from the file selection dialog

Tables 6

The page configuration file (see “Configuration Files” on page 6-14) may contain two
types of tables, both of which can improve the readability of your NightTrace displays:

• string tables (see “String Tables” on page 6-16)
6-14

Invoking NightTrace
• format tables (see “Format Tables” on page 6-20)

A table lets you associate meaningful character strings with integer values such as trace
event arguments. These character strings may appear in NightTrace displays.

The following table names are reserved in NightTrace and should not be redefined in
uppercase or lowercase:

- event

- pid

- tid

- boolean

- name_pid

- name_tid

- node_name

- pid_nodename

- tid_nodename

- vector

- syscall

- device

- vector_nodename

- syscall_nodename

- device_nodename

The results are undefined if you supply your own version of these tables.

NOTE

The only way to put tables into your configuration file is by text
editing the file before you invoke NightTrace. To avoid any for-
ward-reference problems, define all string tables before any for-
mat tables.

For more information on pre-defined tables, see “Pre-Defined Strings Tables” on page
6-17, and page 12-14.

If you define a string table or format table more than once in a configuration file, Night-
Trace merges the two tables; if there are duplicate entries, values come from the last defi-
nition.
6-15

NightTrace RT User’s Guide
String Tables 6

You can log a trace event with one or more numeric arguments. Sometimes these
arguments can take on a nearly fixed set of values. A string table associates an integer
value with a character string. Labeling numeric values with text can make the values eas-
ier to interpret.

The syntax for a string table is:

string_table (table_name) = {
 item = int_const, “str_const” ;
 ...
 [default_item = “str_const” ;]
};

Include all special characters from the syntax except the ellipsis (...) and square brackets
([]).

The fields in a string table definition are:

string_table

The keyword that starts the definition of all string tables.

table_name

The unique, user-defined name of this table. This name describes the relation-
ship of the numeric values in this string table.

An item line associates an integer value with a character string. This line extends from the
keyword item through the ending semicolon. You may define any number of item lines
in a single string table. The fields in an item line are:

item

The keyword that begins all item lines.

int_const

An integer constant that is unique within table_name. It may be decimal, octal,
or hexadecimal. Decimal values have no special prefix. Octal values begin
with a zero (0). Hexadecimal values begin with 0x.

str_const

A character string to be associated with int_const. Keep this string short; oth-
erwise, NightTrace may be unable to display it in the limited window space
available. Use a \n for a newline, not a carriage return in the middle of the
string.

The optional default item line associates all other integer values (those not explicitly refer-
enced) with a single string.
6-16

Invoking NightTrace
TIP

If your table needs only one entry, you may omit the item line and
supply only the default item line. A get_string() call with
this table name as the first parameter needs no second parameter.

NightTrace returns a string of the item number in decimal if:

• there is no default item line, and the specified item is not found

• the string table is not found (The first time NightTrace cannot find a
particular string table, NightTrace flags it as an error.)

The following lines provide an example of a string table in a configuration file.

string_table (curr_state) = {
 item = 3, “Processing Data”;
 item = 1, “Initializing”;
 item = 99, “Terminating”;
 default_item = “Other”;
};

In this example, your application logs a trace event with a numeric argument that identi-
fies the current state (curr_state). This argument has three significant values (3, 1,
and 99). When curr_state has the value 3, the NightTrace display shows the string
“Processing Data.” When it has the value 1, the display shows “Initializing.”
When it has the value 99, the display shows “Terminating.” For all other numeric
values, the display shows “Other.”

For more information on string tables and the get_string() function, see page 11-100.

Pre-Defined Strings Tables 6

The following string tables are pre-defined in NightTrace:

event

The event string table is a dynamically generated table which contains all trace
event names.

This table is indexed by an event code or an event code name. Examples of using
this table are:

get_string(event, 4306)
get_item(event, “IRQ_EXIT”)

pid

A dynamically generated string table internal to NightTrace. In user tracing, it asso-
ciates global process ID numbers with process names of the processes being traced.
In kernel tracing, it associates process ID numbers with all active process names and
resides in the dynamically generated vectors file.
6-17

NightTrace RT User’s Guide
NOTE

When analyzing trace event files from multiple systems, process
identifiers are not guaranteed to be unique across nodes. There-
fore, accessing the pid table may result in an incorrect process
name being returned for a particular process ID. To get the cor-
rect process name for a process ID, the pid table for the node on
which the process identifier occurs should be used instead. The
pid table is maintained for backwards compatibility.

This table is indexed by a process identifier or a process name. Examples of using
this table are:

get_string(pid, pid())
get_item(pid, “ntraceud”)

tid

A dynamically generated string table internal to NightTrace. In user tracing, it asso-
ciates NightTrace thread ID numbers with thread names. In kernel tracing, this table
is not used.

NOTE

When analyzing trace event files from multiple systems, thread
identifiers are not guaranteed to be unique across nodes. There-
fore, accessing the tid table may result in an incorrect thread
name being returned for a particular thread ID. To get the correct
thread name for a thread ID, the tid table for the node on which
the process identifier occurs should be used instead. The tid
table is maintained for backwards compatibility.

This table is indexed by a thread identifier or a thread name. Examples of using this
table are:

get_string(tid, tid())
get_item(tid, “cleanup_thread”)

boolean

A string table which associates 0 with false and all other values with true.

name_pid

A dynamically generated string table internal to NightTrace. It maps all known
node ID numbers (which are internally assigned by NightTrace) to the name of the
node’s process ID table).

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get_string(name_pid, node_id())
6-18

Invoking NightTrace
get_item(name_pid, “system123”)

Consider the following example:

get_string(get_string(name_pid,node_id()),pid)

The nested call to get_string(name_pid,node_id()) returns the name of
the process ID table on the system where this trace point was logged. We then index
that table with the current process ID (since processes IDs are guaranteed to be
unique when analyzing mutipile trace event files obtained from multiple systems) to
obtain the name of the current process.

NOTE

The predefined process_name() function is equivalent to the
express ion above - and much s impler to wr i te ! (See
“process_name()” on page 11-31 for more information.)

name_tid

A dynamically generated string table internal to NightTrace. It maps all known
node ID numbers (which are internally assigned by NightTrace) to the name of the
node’s thread ID table).

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get_string(name_tid, 1)
get_item(name_tid, “charon”)

node_name

A dynamically generated string table internal to NightTrace. It associates node ID
numbers (which are internally assigned by NightTrace) with node names.

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get_string(node_name, node_id())
get_item(node_name, “gandalf”)

pid_nodename

A dynamically generated string table internal to NightTrace. In kernel tracing, it
associates process ID numbers with all active process names for a particular node
and resides in that node’s vectors file. In user tracing, it associates global process
ID numbers with process names of the processes being traced for a particular node.

This table is indexed by a process identifier or a process name. Examples of using
this table are:

get_string(pid_sbc1, pid())
get_item(pid_engsim, “nfsd”)
6-19

NightTrace RT User’s Guide
tid_nodename

A dynamically generated string table internal to NightTrace. In kernel tracing, this
table is not used. In user tracing, it associates NightTrace thread ID numbers with
thread names for a particular node.

This table is indexed by a thread identifier or a thread name. Examples of using this
table are:

get_string(tid_harpo, 1234567)
get_item(tid_shark, “reaper_thread”)

vector

See page 12-14.

syscall

See page 12-14.

device

See page 12-14.

vector_nodename

See page 12-14.

syscall_nodename

See page 12-14.

device_nodename

See page 12-14.

You can use pre-defined string tables anywhere that string tables are appropriate. Use the
get_string() function to look up values in string tables. For information about the
get_string() function, see page 11-100.

Format Tables 6

Like string tables, format tables let you associate an integer value with a character string;
however, in contrast to a string table string, a format table string may be dynamically
formatted and generated. Labeling numeric values with text can make the values easier to
interpret.

The syntax for a format table is:

format_table (table_name) = {
 item = int_const, “format_string” [, “value1”] ... ;
 ...
 [default_item = “format_string” [, “value1”] ... ;]
};

Include all special characters from the syntax except the ellipses (...) and square brack-
ets ([]).
6-20

Invoking NightTrace
The fields in a format table are:

format_table

The keyword that begins the definition of all format tables.

table_name

The unique, user-defined name of this table. This name describes the relation-
ship of the numeric values in this format table.

An item line associates a single integer value with a character string. This line extends
from the keyword item through the ending semicolon. You may have any number of
item lines in a single format table.

The fields in an item line are:

item

The keyword that begins all item lines.

int_const

An integer constant that is unique within table_name. This value may be deci-
mal, octal, or hexadecimal. Decimal values have no special prefix. Octal val-
ues begin with a zero (0). Hexadecimal values begin with 0x.

format_string

A character string to be associated with int_const. Keep this string short; oth-
erwise, NightTrace may be unable to display it in the limited window space
available. Use a \n for a newline, not a carriage return in the middle of the
string.
6-21

NightTrace RT User’s Guide
The string contains zero or more conversion specifications or display formats.
Valid conversion specifications for displays include the following:

%i Signed integer

%u Unsigned decimal integer

%d Signed decimal integer

%o Unsigned octal integer

%x Unsigned hexadecimal integer

%lf Signed double precision, decimal floating point

%e Signed decimal floating point, exponential nota-
tion

%c Single character

%s Character string

%% Percent sign

 \n Newline

For more information on these conversion specifications, see printf(3).

format_string may contain any number of conversion specifications. There is a
one-to-one correspondence between conversion specifications and quoted val-
ues. A particular conversion specification-quoted value pair must match in
both data type and position. For example, if format_string contains a %s and a
%d, the first quoted value must be of type string and the second one must be of
type integer. If the number or data type of the quoted value(s) do not match
format_string, the results are not defined.

value1

A value associated with the first conversion specification in format_string.
The value may be a constant string (literal) expression or a NightTrace expres-
sion. A string literal expression must be enclosed in double quotes. An
expression may be a get_string() call (see page 11-100). For more infor-
mation on expressions, see Chapter 11 “Using Expressions”.

The optional default_item line associates all other integer values with a single format
item. NightTrace flags it as an error if an expression evaluates to a value that is not on an
item line and you omit the default item line.

TIP

If your table needs only one entry, you may omit the item line and
supply only the default item line. A get_format() call with
this table name as the first parameter needs no second parameter.
6-22

Invoking NightTrace
The following lines provide an example of a string table and format table in a
configuration file.

string_table (curr_state) = {
 item = 3, “Processing Data”;
 item = 1, “Initializing”;
 item = 99, “Terminating”;
 default_item = “Other”;
};

format_table (event_info) = {
 item = 186, “Search for the next time we process data”;
 item = 25, “The current state is %s”,
 “get_string (curr_state, arg1())”;
 item = 999, “Current state is %s, current trace event is %d”,
 “get_string (curr_state, arg1())”,
 “offset()”;
 default_item = “Other”;
};

In this example, the first numeric argument associated with a trace event represents the
current state (curr_state), and the event_info format table represents information
a s s o c i a t e d w i t h t h e t r a c e e v e n t I D s . W h en t r ac e e v e n t 186 o c c u r s , a
get_format(event_info,186) makes NightTrace display:

Search for the next time we process data

When trace event 25 occurs, NightTrace replaces the conversion specification (%s) with
the result of the get_string() call. If arg1() has the value 1, then NightTrace dis-
plays:

The current state is Initializing

When trace event 999 occurs, NightTrace replaces the first conversion specification (%s)
with the result of the get_string() call and replaces the second conversion
specification (%d) with the integer result of the numeric expression offset(). If
arg(1) has the value 99 and offset() has the value 10, then NightTrace displays:

Current state is Terminating, current trace event is
10

For all other trace events, NightTrace displays “Other”.

For more information on get_string(), see “get_string()” on page 11-100.

For more information on format tables and the get_format() function, see
“get_format()” on page 11-104.

For more information about arg1(), see “arg()” on page 11-16.

For more information about offset(), see “offset()” on page 11-25.
6-23

NightTrace RT User’s Guide
Session Configuration Files 6

A session configuration file defines a NightTrace session.

NOTE

NightTrace remembers the last session loaded or saved on a
per-user basis. To simplify restarting NightTrace at another time
to analyze the same data, the usage of the --use-session (-u)
command line option (see “-u --use-session” on page 6-5)
is strongly encouraged to invoke NightTrace with the last session
loaded or saved.

A session configuration may include:

• daemon definitions

See “Daemon Definition Dialog” on page 7-57 for more information.

• display page configurations

See “Configuration Files” on page 6-14 for more information.

• string tables

- event names specified for user event IDs

- any user-defined string tables

- string tables imported from generated Ada display page configura-
tion files

- any modifications to default NightTrace string tables, or string tables
embedded in trace data files

• profiles of conditions and states

See “Using Expressions” on page 11-1 for more information.

• named tags

See “Tags...” on page 9-13 for more information.

• previously-executed searches

See “Search/Close” on page 8-17 for more information.

• previously-executed summaries

See “Summarizing Statistical Information” on page 8-19 for more information.

• references to saved trace data segment files

See “Trace Data Segments” on page 6-25 for more information.
6-24

Invoking NightTrace
• references to kernel trace files generated by ntracekd (see “The ntracekd
Daemon” on page 4-1), or a kernel daemon defined in the GUI (see “Ker-
nel” on page 7-63)

• references to user trace files generated by ntraceud (see “The ntraceud
Daemon” on page 3-1), or a user daemon defined in the GUI (see “User
Application” on page 7-63)

Session configuration files can be generated by the following menu items in the Night-
Trace menu of the NightTrace Main Window:

- Save Session (see “Save Session” on page 7-4)

- Save Session Copy (see “Save Session Copy” on page 7-5)

- Save Session As... (see “Save Session As...” on page 7-4)

Upon exiting when there are unsaved changes to the session, the user is given the chance
to Save Session and Exit or Save Session Copy and Exit . See “Unsaved
Changes” on page 7-7.

The user may load the session on a subsequent invocation of NightTrace by either:

- specifying the session configuration filename on the command-line when
invoking ntrace (see “Invoking NightTrace” on page 6-1)

- using the Open Session dialog (see “Open Session...” on page 7-3) to
open the session configuration file from the NightTrace Main Window

Trace Data Segments 6

Trace data segments are conglomerations of all trace data saved in a much more efficient
format than raw trace event files providing for faster initialization at startup.

Trace data segments are saved using the Save Trace Segments... menu option from
the NightTrace menu on the NightTrace Main window (see “NightTrace” on page
7-2).
6-25

NightTrace RT User’s Guide
6-26

7
Chapter 7The NightTrace Main Window

7
7
7

The NightTrace GUI is invoked using ntrace (see “Invoking NightTrace” on page 6-1).

By default, the NightTrace Main window is presented as shown in the figure below.

Figure 7-1. NightTrace Main Window

The NightTrace Main window consists of the following components:

• NightTrace Main window Menu Bar (see page 7-2)

• NightTrace Main window Tool Bar (see page 7-43)

• Profile Area (see 7-45)

• Event Display Areas (see 7-46)

• Trace Segment Statistic Area (see 7-48)

• Daemon Control Area (see page 7-50)
7-1

NightTrace RT User’s Guide
NightTrace Main window Menu Bar 7

The NightTrace Main window menu bar is a part of the NightTrace Main window (see
“The NightTrace Main Window” on page 7-1).

The NightTrace Main window menu bar provides access to the following menus:

• NightTrace

• Search

• Summary

• Daemons

• Pages

• Profiles

• Event

• Edit

• View

• Tools

• Help

Each menu is described in the sections that follow.

NightTrace 7

The NightTrace menu contains session-related items such as initiating a new session,
saving the current session to a configuration file, and opening a previously-saved configu-
ration file.

A session includes daemon configurations, trace data sets, configuration options, display
pages, and user-defined profiles.
7-2

The NightTrace Main Window
Figure 7-2. NightTrace menu

Open Session...

Displays the Open Session dialog allowing the user to navigate to the desired
directory and select a previously-saved session configuration file to open (see “Ses-
sion Configuration Files” on page 6-24).

NOTE

Filenames are relative to the host system (the system where the
NightTrace GUI is running) in the Open Session dialog.

NOTE

NightTrace will automatically load the last session used when
invoked with the -u option. See “Invoking NightTrace” on page
6-1 for more information.

If an attempt is made to open a previously-saved session configuration file when
changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes dialog is presented to the user (see “Unsaved Changes”
on page 7-7).

New Session

Creates a new session.
7-3

NightTrace RT User’s Guide
If an existing session is open, it is first closed by this operation.

If changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes dialog is presented to the user (see “Unsaved Changes”
on page 7-7).

Save Session

Save Session saves the current session to a session configuration file (see “Ses-
sion Configuration Files” on page 6-24 for a complete description of the contents of
a session).

Save Session allows for quickly saving a session. The user is not prompted for
the filenames where the session, trace data, or display pages are to be saved. These
are automatically saved in appropriately named files in the current working direc-
tory.

If the current session has not been saved to a file in the past, the session is automati-
cally saved to a new session configuration file. The new filename appears in the
window title.

If the current session was loaded from or previously saved to a session configuration
file, the session is saved to that file.

Trace data that has been touched is saved by Save Session. Touched trace data
includes trace data modified by discarding events (see “Discard Events...” on page
9-12). In addition, trace data from a trace data segment file where one or more seg-
ments have been saved to another trace data segment file or closed is saved.

If the trace data was loaded from a previously saved trace data segment file, the data
is saved to that file. If the trace data has never been saved to a trace data segment
file, the data is automatically saved to a newly created trace data segment file

If the display pages were loaded from a previously saved display page file, the page
is saved to that file.

If the display page has never been saved to a display page file, the page is automati-
cally saved to a newly created display page file.

Save Session As...

Displays the Save Session dialog allowing the user to navigate to the desired
directory and specify the name of the file to which the session configuration will be
saved (see “Session Configuration Files” on page 6-24).

NOTE

Filenames are relative to the host system (the system where the
NightTrace GUI is running) in the Save Session dialog.
7-4

The NightTrace Main Window
The new filename appears in the Trace Segment Statistics area above the Dae-
mon Control Area in the NightTrace Main window (see “Trace Segment Statistic
Area” on page 7-48).

Save Session Copy

Save Session Copy saves the current session to a newly created session config-
uration file (see “Session Configuration Files” on page 6-24 for a complete descrip-
tion of the contents of a session).

In addition, all trace data and display pages are saved to new file names using a
comon session file name prefix.

Save Session Copy allows for quickly saving one or more copies of a session at
certain stages. The user is not prompted for the filenames where the session, trace
data, or display pages are to be saved. These are saved in appropriately named files
in the current working directory.

Open Trace File...

Presents the user with a standard file selection dialog so that they may select a trace
event file to load. The event file can be a user trace data file or a kernel trace data
file.

Save Trace Segments...

Allows the user to select a filename for saving the segments. Multiple segments
may be selected and will be combined into a single segment when written to the
specified file.

Close Trace Segments

Closes the trace data segments currently selected in the Trace Segment Statis-
tic area. The events associated with the closed segments are immediately removed
from the current data set being analyzed.

Data segments that were not associated with a trace file and that have not yet been
saved will be lost when closed.

Open Event Map File...

Presents the user with a standard file selection dialog to select an event map file to
load. An event map file provides ASCII names for specific trace event values.

See “Event Map Files” on page 6-11 for more information.

Open Config File...

Presents the user with a standard file selection dialog to select a configuration file to
load. Configuration files contain string and format tables as well as display page
definitions.

See “Configuration Files” on page 6-14 for more information.
7-5

NightTrace RT User’s Guide
Display Buffer Size Warning...

Allows the user to select the memory size threshold for warnings when ntrace dis-
play buffers exceed the specified size and whether ntrace should automatically
halt any active daemons when the threshold is exceeded.

Close

Closes the NightTrace Main window but leaves NightTrace running if other win-
dows are active.

If no other windows are active and if changes have been made to the current config-
uration but have not yet been saved, the Unsaved Changes dialog is presented to
the user (see “Unsaved Changes” on page 7-7).

Exit

Closes the session and exits NightTrace completely.

If changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes dialog is presented to the user (see “Unsaved Changes”
on page 7-7).

Exit Immediately

Closes the session and exits NightTrace without prompting to save changes that
have been made. Any changes will be lost.
7-6

The NightTrace Main Window
Unsaved Changes 7

The Unsaved Changes dialog is presented whenever the user attempts to close the ses-
sion without saving changes that have been made.

Figure 7-3 shows the dialog that is presented whenever the user attempts to exit Night-
Trace without saving changes that have been made.

Figure 7-3. Unsaved Changes / Exit dialog

NOTE

To avoid the warning concerning unsaved changes to NightTrace
when exiting, the user may chose the Exit Immediately menu
item (see “Exit Immediately” on page 7-6). However, any
unsaved changes will be lost.

Exit Anyway

Discard the unsaved changes and exit NightTrace.

Save and Exit

Save the unsaved changes and exit.

If the session had not been saved to a session configuration file (see “Session Con-
figuration Files” on page 6-24) before, the name of the newly created session con-
figuration file is presented in a dialog before exiting.

Save Copy and Exit

Save the entire session, along with unsaved changes, to a new session configuration
file (see “Session Configuration Files” on page 6-24).

Trace data is saved to a newly created trace data file associated with the session (see
“Save Session Copy” on page 7-5 for more details).

The name of the newly created session configuration file is presented in a dialog
before exiting.
7-7

NightTrace RT User’s Guide
Cancel

Aborts the exit request.

Figure 7-4 shows the dialog that is presented whenever the user attempts to close the cur-
rent session without exiting (performing a session operation such as New Session ,
Open Session, or E xit).

Figure 7-4. Unsaved Changes / Proceed dialog

Proceed Anyway

Discard the unsaved changes and proceed with session operation.

Save and Proceed

Save the unsaved changes and proceed with the session operation.

If the session had not been saved to a session configuration file (see “Session Con-
figuration Files” on page 6-24) before, the name of the newly created session con-
figuration file is presented in a dialog before proceeding.

Save Copy and Proceed

Save the entire session, along with unsaved changes, to a new session configuration
file (see “Session Configuration Files” on page 6-24).

Trace data is saved to a newly created trace data file associated with the session (see
“Save Session Copy” on page 7-5 for more details).

The name of the newly created session configuration file is presented in a dialog
before proceeding.

Cancel

Aborts the session operation.

Search 7

The Search menu contains search-related items such as opening the Search diaglog to
define search criteria, executing a forward or backward search with the most recent search
criteria, or modifying search options.
7-8

The NightTrace Main Window
Figure 7-5. Search menu

Search...

Accelerator: Ctrl+F

Displays the Profiles dialog allowing the user to define the search criteria and to
execute a search. See “Profiles” on page 8-1 for more information.

Search Forward

Accelerator: Period

Executes a forward search using the last profile defined or selected. If no profiles
have been defined, a forward search for the next event is executed.

Search Backward

Accelerator: Comma

Executes a forward search using the last profile defined or selected. If no profiles
have been defined, a backward search for the previous event is executed.

Options...

Displays the Search Options dialog as shown below:
7-9

NightTrace RT User’s Guide
Figure 7-6. Search Options dialog

Search Scope

This option list allows you to define the scope of searches.

All Events

Sets the scope to the entire data set.

Current Interval

Sets the scope to the events included by the current time interval defined
by the Start Time and End Time settings in the Interval Control
area of display pages. See Section “Interval Control Area” on page 9-32
for more information.

Search Action

This option list controls the actions taken when a search is executed

Scroll to match

Causes the current timeline to be moved to the event matching the
search criteria.

Zoom to match

Moves the current timeline and additionally expands the current interval
to include the event matching the search criteria.

Do nothing

Prevents the current timeline from moving, but the search results are
still printed in the text display areas of the NightTrace Main window
and in display pages.
7-10

The NightTrace Main Window
Search Wrap

This option list controls whether a search should wrap around to the other end of the
data set when either the beginning or end is reached.

Ask before wrapping

Causes a dialog to pop up when either end of the data set is reached and
allows you to continue searching at the other end or to cancel the search.

Wrap around

Automatically causes wrap-around searching.

Do not wrap

Causes searches to fail if they encounter the beginning or end of the data
set.

Summary 7

The Summary menu provides for defining profiles for summaries, executing summaries,
and controlling summary options.

Figure 7-7. Summary menu

Summary...

Accelerator: Ctrl+U

Opens the Profiles dialog (see “Profiles” on page 8-1) allowing the user to select a
profile to summarize or define a new profile to summarize.

Summarize

Accelerator: Ctrl+Z

Executes a summary on the current profile. If no profiles has been defined, a sum-
mary of all events is executed.

Options...

Opens the Summary Options dialog which controls how summaries operate
7-11

NightTrace RT User’s Guide
Figure 7-8. Summary Options dialog

Summary Scope

This option list allows you to define the scope of summaries.

All Events

Sets the scope to the entire data set.

Current Interval

Sets the scope to the events included by the current time interval defined
by the Start Time and End Time settings in the Interval Control
area of display pages. See Section “Interval Control Area” on page 9-32
for more information.

Region

Sets the scope to the selected region defined by the current Mark and
the current timeline. See Section “Set the Mark to the current timeline”
on page 9-27 for more information.

State Summary Action

This option list controls whether the current timeline moves when a summary is exe-
cuted. These options are only relevant for summaries of profiles which defined a
state.

Scroll to longest duration

Moves the current timeline to the beginning of the state with the longest
duration within the summary scope.
7-12

The NightTrace Main Window
Scroll to shortest duration

Moves the current timeline to the beginning of the state with the shortest
duration within the summary scope.

Do nothing

Prevents the current timeline from being moved, but the summary
results are still displayed in page text areas.

 State Summary Graph

Display a Data Graph (see “Data Graph” on page 10-8) showing either the durations
of each state on which the summary is based or the gaps between the states.

NOTE

The scale factor for these graphs is automatically determined by
the shortest and longest values found. This can sometimes have
the effect of obscuring useful data. Consider a situation where
99% of the state instances had a duration on the order of 10-30
microseconds, but a single instance lasted 500000 microseconds.
The resulting graph would have a single large spike with the
details of the remaining states difficult to ascertain. Use the (n x
Std. Dev.) menu items in such instances.

The user may select one of the following choices from the drop-down menu:

Durations

Display a Data Graph showing the durations of each state on which the
summary is based.

Durations -1 x Std. Dev.

Display a Data Graph showing the durations of each state on which the
summary is based.

The scale factor for the graph is automatically determined by the mini-
mum and maximum state duration that fall within one standard devia-
tion of the actual minimum and maximum. All state durations will
appear on the graph.

Durations - 2 x Std. Dev.

Display a Data Graph showing the durations of each state on which the
summary is based.

The scale factor for the graph is automatically determined by the mini-
mum and maximum state duration that fall within two standard devia-
tions of the actual minimum and maximum. All state durations will
appear on the graph.
7-13

NightTrace RT User’s Guide
Gaps

Display a Data Graph showing the durations of the gap between the
states on which the summary is based.

Gaps - 1 x Std. Dev.

Display a Data Graph showing the durations of the gap between the
states on which the summary is based.

The scale factor for the graph is automatically determined by the mini-
mum and maximum duration of the gaps between states that fall within
one standard deviation of the actual minimum and maximum. All state
durations will appear on the graph.

Gaps - 2 x Std. Dev.

Display a Data Graph showing the durations of the gap between the
states on which the summary is based.

The scale factor for the graph is automatically determined by the mini-
mum and maximum duration of the gaps between states that fall within
two standard deviations of the actual minimum and maximum. All state
durations will appear on the graph.

Do not graph

No state summary graph is displayed.

Summary Matches

This option list controls whether an additional summary results dialog is shown
when summaries are executed.

Show matches in sortable list

Causes the dialog to appear when a summary is executed. The dialog
contains sortable columns. Clicking on a column header causes the
entries to be sorted by that criteria Subsequent clicks on the same col-
umn header reverse the sort order. For state summaries, the Start Off-
set, End Offset, Gap, and Duration of each state in the summary
scope are displayed. For other summaries, the Offset and Gap col-
umns are shown. Selecting a row in the list causes the current timeline
to move to event associated with that row (for states, the event that
defines the start of the state).

Do not show matches

Prevents the summary results dialog from being displayed.
7-14

The NightTrace Main Window
Daemons 7

The Daemons menu provides functionality for configuring new and existing daemon
definitions, as well as attaching to and detaching from running daemons.

Figure 7-9. Daemons menu

New...

Accelerator: Ctrl+D

Opens the Daemon Definition dialog (see “Daemon Definition Dialog” on page
7-57) allowing the user to configure a new daemon definition.

Edit...

Opens the Daemon Definition dialog (see “Daemon Definition Dialog” on page
7-57) for the daemon definition currently selected in the Daemon Control Area (see
“Daemon Control Area” on page 7-50) allowing the user to edit that particular defi-
nition.

NOTE

The daemon definition may not be altered while the daemon is
executing.
7-15

NightTrace RT User’s Guide
Delete

Deletes the daemon definition(s) currently selected in the Daemon Control Area
(see “Daemon Control Area” on page 7-50).

The user is prompted for confirmation before the deletion is performed.

Launch

Accelerator: Ctrl+L

Starts execution of the daemon(s) currently selected in the Daemon Control Area.

NOTE

Starting a daemon does not imply that the daemon begins to col-
lect events.

Launch operations are time consuming and involve possibly connecting to a target
system, user authentication, etc. Once the daemon is launched, it is more efficient to
utilize the Pause and Resume operations which require less time and resources.

The same action is performed by pressing the Launch button in the Daemon Con-
trol Area (see “Launch” on page 7-52).

Halt

Accelerator: Ctrl+H

Stops execution of the daemon(s) currently selected in the Daemon Control Area.

The connection to the target system is terminated by this operation. Once the dae-
mon is launched, it may be more efficient to utilize the Pause and Resume oper-
ations.

The same action is performed by pressing the Halt button in the Daemon Control
Area (see “Halt” on page 7-53).

Pause

Pauses the execution of the daemon(s) currently selected in the Daemon Control
Area.

NOTE

When a daemon is paused, incoming trace events are discarded
without notice.

The same action is performed by pressing the Pause button in the Daemon Control
Area (see “Pause” on page 7-53).
7-16

The NightTrace Main Window
Resume

Accelerator: Ctrl+R

Resumes execution of the daemon(s) currently selected in the Daemon Control
Area. Once resumed, incoming events are placed into the daemon buffer for subse-
quent processing by the daemon.

The same action is performed by pressing the Resume button in the Daemon Con-
trol Area (see “Resume” on page 7-53).

Flush Buffer

Accelerator: Ctrl+F

Flushes trace events from the buffers associated with the daemon(s) currently
selected in the Daemon Control Area to either the NightTrace display buffer (see
“Stream” on page 7-64) or to the output file (see “Output File” on page 7-65).

The same action is performed by pressing the Flush button in the Daemon Control
Area (see “Flush” on page 7-53).

Attach...

Allows the user to query any target system for user application trace daemons and
displays the results in the Attach Daemons dialog (see “Attach Daemons” on
page 7-20). The user may then attach to the desired daemon and control it.

Detach

Relinquishes control of the running daemon(s) currently selected in the Daemon
Control Area (see “Daemon Control Area” on page 7-50).

Reset

Flushes the contents of trace buffers for the running daemon(s) currently selected in
the Daemon Control Area (see “Daemon Control Area” on page 7-50). Any events
in the buffer at the time of the reset are discarded. Events that have already been
written to the output device (file or stream) are unaffected.

Pressing the Reset button also places the selected daemons in a Paused state (see
“State” on page 7-51).

NOTE

This option is not supported for kernel trace daemons.

Refresh Rate...

Provides a dialog which controls the refresh interval of statistics for active daemons.
7-17

NightTrace RT User’s Guide
Login 7

This dialog is presented when attaching to a daemon on a remote system (see “Attach
Daemons” on page 7-20).

Figure 7-10. Login dialog

After filling in the required fields in the Login dialog, the Enter Password dialog (see
“Enter Password” on page 7-18) is displayed, allowing the user to enter the password for
the specified User on the specified Target System.

NOTE

Passwords are not included in the configuration files written by
NightTrace. They are retained only during the current invocation
of NightTrace.

Target System

The name of the target system to which the user wishes to connect.

User

The login name of the user on the specified Target System.

Enter Password 7

The Enter Password dialog is displayed during user authentication on a target system.

NOTE

The Enter Password dialog is not displayed if a valid pass-
word has already been entered for the specified user on the speci-
fied target system during the current invocation of NightTrace.
7-18

The NightTrace Main Window
Figure 7-11. Enter Password dialog

Enter the password for the specified user on the specified target system.

NOTE

Passwords are not included in the configuration files written by
NightTrace. They are retained only during the current invocation
of NightTrace. Passwords are encrypted before being transmitted
to the target system for user authentication.
7-19

NightTrace RT User’s Guide
Attach Daemons 7

The Attach Daemons dialog is displayed when the user attempts to attach to a daemon
running on a remote target system.

This dialog is presented following user authentication (see “Login” on page 7-18 and
“Enter Password” on page 7-18) on that system.

Figure 7-12. Attach Daemons dialog

Program ID

The process ID (PID) of the user trace daemon on the remote system.

Creator

The login name of the user who owns the user trace daemon on the remote system.

Attach as User

The login name of the user attaching to the user trace daemon. This value defaults
to the user specified in the Login dialog (see “Login” on page 7-18) presented prior
to this dialog.

Key File

The filename which is used to calculate the shared memory segment identifier asso-
ciated with the logging of user trace events. See “Key File” on page 7-64 for more
information.
7-20

The NightTrace Main Window
The following buttons appear at the bottom of the Attach Daemons dialog and have the
specified meaning:

Attach

Attaches to the daemon selected in the list and closes the Attach Daemons dia-
log.

Set Attach as User...

Brings up a dialog allowing the user to specify the login name used to attach to the
selected daemon(s). Since the daemon's shared memory is owned by the creator, the
user attaching to the user trace daemon could be relevant in terms of permissions.

Refresh

Queries the target system for active trace daemons.

Cancel

Closes the Attach Daemons dialog without attaching to any of the listed dae-
mons.
7-21

NightTrace RT User’s Guide
Pages 7

The Pages menu allows the user to open pre-configured display pages as well as empty
display pages. There is also an option for the user to open up a pre-existing display page.

The Pages menu appears on the NightTrace Main window menu bar (see “NightTrace
Main window Menu Bar” on page 7-2).

Figure 7-13. Pages menu

New Blank Page

This menu choice opens a new display page (see Chapter 9 “Display Pages”) so that
the user may configure it from scratch. The Grid (see must be populated with dis-
play objects (see Chapter 10 “Display Objects”) before trace information can be
analyzed or graphically examined.
7-22

The NightTrace Main Window
NOTE

The new display page comes up in edit mode so that display
objects may be created and configured (see “Switch between view
and edit mode” on page 9-27 for more information).

Figure 7-14. New Display Page

New User Trace Page

This menu choice opens the default application trace page which is automatically
pre-configured to show all user events and specific descriptions of the event ID and
the first argument of each event.

See “Default Display Page” on page 9-1 for more information.

New Ada Trace Page

This menu choice builds an application trace page which is automatically config-
ured to show task-information displays for every Ada task in the current trace data
set.

A task-information display includes the following information: the task name, the
pid and Ada task ID, and a state graph indicating various Ada language events and
states, especially as related to tasking and exceptions.
7-23

NightTrace RT User’s Guide
Custom Kernel Page...

Presents the Build Custom Kernel Page dialog (see “Build Custom Kernel
Page” on page 7-25) to quickly build a customized kernel page based on choices of
nodes, CPUs, and graphs. When loading kernel trace events in NightTrace, default
kernel display pages are displayed for each node where trace data originated. These
pages show each CPU for each node, as well as a fixed number of graphs and data
boxes per CPU.

However, there may be cases where the default display page for kernel data is not
desirable:

- on multi-CPU nodes, the vertical height of the default kernel page
may be too large

- when shielding a CPU, or running a process with a CPU bias, it may
be desirable to see only data for that CPU

- one or more of the default graphs per CPU may not be of interest

See “Kernel Display Pages” on page 12-9 for more information.

Process Specific Page...

Presents the Build Process Specific Kernel Page dialog (see “Build Process
Specific Kernel Page Dialog” on page 7-29) to quickly build a customized kernel
page that is filtered to display specific processes. The dialog allows you to choose
one or more processes from the list of processes represented in the current kernel
data set.

Open Existing Page...

This menu choice presents the user with a standard file selection dialog so that they
may select a pre-existing configuration page from a previous NightTrace session.
7-24

The NightTrace Main Window
Build Custom Kernel Page 7

The Build Custom Kernel Page dialog is opened by selecting Custom Kernel
Page... from the Pages menu of the NightTrace Main window (see “Custom Kernel
Page...” on page 7-24).

Figure 7-15. Build Custom Kernel Page dialog

Select which nodes you would like included on the customized kernel page from the list.

NOTE

To select multiple items, press the Ctrl key while selecting indi-
vidual items in the list or hold the Shift key to select a range of
items.

Build Page

Creates the customized kernel page based on choices of nodes, CPUs, and graphs.

Set CPUs...

Presents the Select CPUs dialog as shown in Figure 7-16 allowing the user to
choose which CPUs from the selected node to display in the display page.

Figure 7-16. Select CPUs dialog
7-25

NightTrace RT User’s Guide
Select the desired CPUs and press the Set CPUs button. Cancel dismisses the
dialog without making any changes.

Note for each node, the CPUs that would be displayed in the new kernel display
page are shown in the CPUs column of the Build Custom Kernel Page dialog.

NOTE

By default, all CPUs per node are displayed by default in the built
kernel display page.

Set Graphs...

Presents the Select Graphs dialog (see “Select Graphs” on page 7-27) allowing
the user to choose which graphs to display for each CPU in the display page to be
built.

Set to Default

Restores the default settings so that all graphs are displayed for all CPUs.

Cancel

Aborts the building of the customized kernel display page.
7-26

The NightTrace Main Window
Select Graphs 7

The Select Graphs dialog allows the user to choose which graphs to display for
each CPU in the display page to be built.

Figure 7-17. Select Graphs dialog

Select the CPU to which these Graph Settings will apply from the drop-down at
the top of the dialog and press the Set Graphs button after selecting the desired
graphs. Cancel aborts the selection.

Show Kernel Event Graph

When this item is checked, the display page will include a kernel event graph
for the CPU(s) selected from the Graph Settings drop-down.

Show PID Graph

When this item is checked, the display page will include a PID graph for the
CPU(s) selected from the Graph Settings drop-down.

See “Process Information” on page 12-12 for more information.

Show Syscall Graph

When this item is checked, the display page will include a syscall graph for
the CPU(s) selected from the Graph Settings drop-down.

See “System call Information” on page 12-11 for more information.
7-27

NightTrace RT User’s Guide
Show Exception Graph

When this item is checked, the display page will include an exception graph
for the CPU(s) selected from the Graph Settings drop-down.

See “Exception Information” on page 12-11 for more information.

Show Interrupt Graph

When this item is checked, the display page will include an interrupt graph for
the CPU(s) selected from the Graph Settings drop-down.

See “Interrupt Information” on page 12-10 for more information.

Show Thread Names

When this item is checked, the display page will append the name of the
thread associated with an event to the process name in the process label asso-
ciated with PID graphs. Thread names are only available when mixing user
trace data with kernel trace data when the user trace data was generated by a
program using the thread-aware version of the NightTrace API library. See
“Threads and Logging” on page 2-26 for more information. If a thread name
is not available, the thread’s system thread ID (see gettid(2)) is used
instead.
7-28

The NightTrace Main Window
Build Process Specific Kernel Page Dialog 7

The Build Process Specific Kernel Page dialog is opened by selecting Process
Specific Page... from the Pages menu of the NightTrace Main window (see “Process
Specific Page...” on page 7-24).

Figure 7-18. Build Process Specific Kernel Page dialog

This dialog will build a kernel display page customized to display information about the
processes you select from the list.

The kernel display page will consist of one or more kernel-information displays, depend-
ing on the Graph By menu selection described below. A kernel-information display con-
sists of 5 rows of labels and graphs which describe interrupts, exceptions, system calls,
process information, and kernel events. See “Kernel Display Pages” on page 12-9 for
more information on kernel-information displays.

Select the processes you want included on the customized kernel page from the list.

NOTE

To select multiple items, press the Ctrl key while selecting indi-
vidual items in the list or hold the Shift key to select a range of
items.
7-29

NightTrace RT User’s Guide
NOTE

Two columns are presented in the dialog: Process and ID. You
can sort the list of processes by clicking on either column header.
Clicking on a column header sets the sort criteria to that column
and toggles the sort order.

Graph by CPU/Process Menu

This option menu allows you to select how the processes should be displayed on the
new kernel page. Selecting Graph by CPU will generate individual kernel-infor-
mation displays which only display the processes you select; one for each CPU on
the system associated with the current kernel data set. Selecting Graph by Pro-
cess will generate individual kernel-information displays; one for each of the pro-
cesses you select, regardless of the CPU upon which the process executes.

View ID in Decimal/Hexadecimal

This option menu controls the formatting of the process ID values in the list of pro-
cesses and process IDs.

OK

Builds a new kernel display page based on the selections you have made in this dia-
log.

Cancel

Aborts the building of the customized kernel display page.

Profiles 7

The Profiles menu manipulates the list of profiles shown in the Profiles area of the
NightTrace Main window.

A profile is a set of criteria either defining a state with beginning and end conditions, or
simply a condition. Profiles are used for searches, summaries, and graphs.
7-30

The NightTrace Main Window
Figure 7-19. Profiles menu

New...

Accelerator: Ctrl+P

This menu choice opens the Profiles dialog so that the user may define a new pro-
file. See Chapter 8, “Profiles” for more information.

Edit...

This menu choice opens the Profiles dialog positioned to the selected profile for
editing. See Chapter 8, “Profiles” for more information.

Delete

This menu choice deletes all currently selected profiles.

Edit CPU Bias...

This menu choice allows the user to add or change a CPU condition on the selected
profile. This is a convient way to apply a CPU condition to multiple profiles at
once.

Edit Process...

This menu choice allows the user to add or change a process condition on the
selected profile. This is a convenient way to apply a process condition to multiple
profiles at once.
7-31

NightTrace RT User’s Guide
Logical And

This menu choice creates a new profile whose condition is the logical AND of the
two currently selected profiles. The new profile is automatically added to the list of
profiles in the Profile List area of the NightTrace Main window.

Logical Or

This menu choice creates a new profile whose condition is the logical OR of the two
currently selected profiles. The new profile is automatically added to the list of pro-
files in the Profile List area of the NightTrace Main window.

Logical Negate

This menu choice creates a new profile whose condition is the logical negation of
the currently selected profiles. The new profile is automatically added to the list of
profiles in the Profile List area of the NightTrace Main window.

Move Up

Accelerator: Ctrl+UpArrow

This menu choice moves the currently selected profile towards the beginning of the
list of profiles shown in the Profile List area of the NightTrace Main window.

Move Down

Accelerator: Ctrl+DownArrow

This menu choice moves the currently selected profile towards the end of the list of
profiles shown in the Profile List area of the NightTrace Main window.

Export...

This menu choice opens the Export Profiles to Analysis API Source dialog
to automatically generate source defining and referencing profiles.
7-32

The NightTrace Main Window
Figure 7-20. Export Profiles dialog

Generate main() function

When checked, this option generates source code for a main C program which cre-
ates an instance of the Analysis API and installs all definitions and callbacks
selected in this dialog.

Generate callback function definitions

When checked, this option generates stub routines for all callback functions that are
defined by this dialog. The stub routines are empty unless the Include default
printf() output in callbacks option is checked. If this option is not checked, the
function profiles are still generated, but no definitions are generated.

Include default printf() output in callbacks

When checked, this option generates source code to print information about
instances of the selected profiles in the callback function definitions.

Report errors from API function calls

When checked, this function will report all errors from API calls to stderr; other-
wise, errors are ignored.

Read trace data from stdin

This option controls the initial API calls which either open a pre-existing data file or
read data from stdin in streaming mode.
7-33

NightTrace RT User’s Guide
Callback for state start

When checked, a callback profile is generated and registered with the API for the
start event of the selected state profiles.

Callback for state end

When checked, a callback profile is generated and registered with the API for the
end event of the selected state profiles.

Callback for state active

When checked, a callback profile is generated and registered with the API for any
event that occurs when selected state profiles are active.

Callback for state inactive

When checked, a callback profile is generated and registered with the API for any
event that occurs when selected state profiles are inactive.

Trace Data File

When Read trace data from stdin is not checked, this text field defined the
data file from which pre-existing data will be read.

Profile Source

This text area defines the name of the source file for all source code generated
except for callback definitions.

Callbacks Source

This text area defines the name of the source file for all source code that define call-
back routines.

Event 7

The Event menu aids in traversing events in the data set.
7-34

The NightTrace Main Window
Figure 7-21. Event menu

Go to Event...

Accelerator: Ctrl+G

This menu choice opens a dialog that allows you to enter the event offset or event
time of a desired event. Event times are recognized by an “s” suffix, denoting sec-
onds. This causes the current timeline to move to the specified event/time.

Go to Previous Event

Accelerator: Ctrl+V

This menu choice moves the current timeline to the event where the most recent cur-
rent timeline was previously defined. You can use this menu choice to go back and
forth between two events of interest.

Go to Preceding Event

Accelerator: Shift+Comma

This menu choice moves the current timeline to the closest event proceeding the
current timeline.

Go to Next Event

Accelerator: Shift+Period

This menu choice moves the current timeline to the closest event after the current
timeline.

Page Up to Preceding Event

Accelerator: PageUp
7-35

NightTrace RT User’s Guide
Advance the current timeline backward so the previous set of events are displayed in
the Event Text area of the NightTrace Main window. The size of the Event
Text area pane determines the number of events to back up.

Page Down to Next Event

Accelerator: PageDown

Advance the current timeline forward so the next set of events are displayed in the
Event Text area of the NightTrace Main window. The size of the Event Text
area pane determines the number of events to advance.

Go to Segment

Change the current timeline to the first event of the selected trace segment in the
Trace Segment area of the NightTrace Main window. This option is useful
when you have multiple segments loaded that are spread out over large sections of
time.

Edit 7

The Edit menu provides for customization of string and format tables as well as for man-
aging event annotations.

Figure 7-22. Edit menu

Copy

Accelerator: Ctrl+C

This menu choice copies all text associated with the selected events Events area
into the inter-application cut and paste buffer.

Event Maps...

Accelerator: Ctrl+M
7-36

The NightTrace Main Window
This menu choice launches the Edit String Table dialog which allows you to
change or add textual handles to event ID numbers and control which arguments are
printed when event detail is shown. See Section “Edit String Table” on page 9-18 for
more information.

Tags...

Accelerator: Ctrl+T

This menu choice launches the Tags dialog which lists all event tags, their time,
offset and distance from the current time line, as well as any textual annotations. See
Section “Tags” on page 9-14 for more information.

Notation

Accelerator: Ctrl+N

This menu choice tags the currently selected event in the Events area and opens the
Edit Tag Notation dialog which allows you to associate text notes with the tag. If
the currently selected event already has been tagged, the existing tag is used and no
new tag is created. See Section “Tags” on page 9-14 for more information.

String Tables...

This menu choice launches the Edit String Tables dialog which allows you to
customize textual information associated with event descriptions and modify thread
and process name resolution. See Section “Edit String Tables” on page 9-16 for
more information.

Distinguish Processes

This menu choice causes NightTrace to automatically change all process name
description to include the system process (or thread) ID as part of the process name,
for any process name which refers to more than one thread ID or process ID. For
example, if a data set includes events from two processes name app, the process
name description might be displayed as app_23983 and app_23997.
7-37

NightTrace RT User’s Guide
View 7

The View menu controls which areas of the NightTrace Main window are visible.

Figure 7-23. View menu

Show Toolbar

This checkbox controls whether the toolbar is displayed.

Show Profiles

This checkbox controls whether the Profiles area is displayed. When NightTrace
is initially launched with a new session, no profiles are defined and the Profile area
is automatically hidden.

Show Events

This checkbox controls whether the Events area is displayed.

Show Text

This checkbox controls whether the Event Detail area is displayed.

Show Segments

This checkbox controls whether Trace Segment Statistic area is displayed.
When launching NightTrace, if no trace data segments yet exist, this area is auto-
matically hidden.

Show Daemons

This checkbox controls whether the Daemon Control area is displayed.
7-38

The NightTrace Main Window
Tools 7

The Tools menu appears on the NightTrace Main window menu bar (see “NightTrace
Main window Menu Bar” on page 7-2).

Figure 7-24. Tools menu

NightBench Builder

Opens the NightBench Program Development Environment. NightBench is a set of
graphical user interface (GUI) tools for developing software with the Concurrent
MAXAdaTM compiler.

See also:

• NightBench User’s Guide (0890480)

NightProbe Monitor

Opens the NightProbe Data Monitoring application. NightProbe is a real-time
graphical tool for monitoring, recording, and altering program data within one or
more executing programs without significant intrusion. NightProbe can be used in a
development environment as a tool for debugging, or in a production environment to
create a “control panel” for program input and output.

See also:

• NightProbe User’s Guide (0898480)

NightSim Scheduler

Opens the NightSim Application Scheduler. NightSim is a tool for scheduling and
monitoring real-time applications which require predictable, repetitive process exe-
cution. With NightSim, application builders can control and dynamically adjust the
periodic execution of multiple coordinated processes, their priorities, and their CPU
assignments.

See also:

• NightSim User’s Guide (0890480)
7-39

NightTrace RT User’s Guide
NightTune Tuner

Opens the NightTune system analysis and tuning application. NightTune is a
real-time graphical tool for monitoring system, process, and thread activity. Night-
Tune provides dynamic tuning of process and thread scheduling attributes as well as
CPU shielding and CPU interrupt affinity.

See also:

• NightTune User’s Guide (0898515)

NightView Debugger

Opens the NightView Source-Level Debugger. NightView is a graphical
source-level debugging and monitoring tool specifically designed for real-time
applications. NightView can monitor, debug, and patch multiple real-time processes
running on multiple processors with minimal intrusion.

See also:

• NightView User’s Guide (0898395)
7-40

The NightTrace Main Window
Help 7

The Help menu appears on the NightTrace Main window menu bar (see “NightTrace
Main window Menu Bar” on page 7-2).

Figure 7-25. Help menu

On Context

Gives context-sensitive help on the various menu options, dialogs, or other parts of
the user interface.

Help for a particular item is obtained by first choosing the On Context menu
option, then clicking the mouse pointer on the object for which help is desired (the
mouse pointer will become a floating question mark when the On Context menu
item is selected).

In addition, context-sensitive help may be obtained for the currently highlighted
option by pressing the F1 key. The HyperHelp viewer will display the appropriate
topic.

On Window

Displays the help topic for the current window.

On Help

Displays this section of the on-line help manual.

NightTrace User’s Guide

Opens the online NightTrace User’s Guide.

NightStar RT Tutorial

Opens the online NightStar RT Tutorial.
7-41

NightTrace RT User’s Guide
Bookshelf

Opens a HyperHelp window that lists all of the Concurrent online publications cur-
rently available on the local system.

On Version

Displays version and copyright information for the NightTrace product.
7-42

The NightTrace Main Window
NightTrace Tool Bar 7

The NightTrace tool bar provides icons for commonly used actions.

Figure 7-26. NightTrace Main Tool Bar
7-43

NightTrace RT User’s Guide
7

Save the current NightTrace session

Create a new daemon

Search backward

Search forward

Summarize

Open profile dialog to create a new profile

Move selected profile(s) down

Move selected profile(s) up

Go to event

Move timeline to previous location

Move timeline to preceeding event

Move timeline to next event

Move timeline; page up in the Event area
7-44

The NightTrace Main Window
The tool bar may be hidden by clearing the Show Toolbar checkbox in the View menu
of the NightTrace Main window. Alternatively, the keyboard sequence Shift+Ctrl+B
toggles the visibility of the tool bar.

Profile Area 7

The profile area lists all currently defined profiles. Profiles are conditions and states that
have been defined or used in search and summary operations.

The profile area is a resizable pane which contains a scrollable list of profiles with 7 col-
umns of information.

Type

The type column indicates whether the profile defines a state or just a condition.

Name

The name column indicates the name of the profile. Names are automatically
assigned when profiles are created and can be changed using the Profiles dialog.

Search

Indicates the profile which will be used if a search operation is executed.

Status

Indicates whether to profile conditions are currently true or false for the event at the
or immediately to the left of the current timeline.

Move timeline; page down in the Event area

Tag selected event and open annotation dialog

Open Tags dialog

Open the Edit Event Map dialog

Open the Edit String Tables dialog
7-45

NightTrace RT User’s Guide
Count

Indicates the count of matches of the profiles from the beginning of the data set up
to the current timeline.

Last Offset

Indicates the last offset which matched the conditions specified in the profile.

Start Offset

For state profiles, indicate the closest start offset of the associated state at or imme-
diately to the left of the current timeline.

Double-clicking a row in the profiles list causes that profile to be selected and launches
the Profiles dialog for editing, search, or summary.

The Profiles area can be hidden by clearing the Show Profiles checkbox from the
View menu of the NightTrace Main window. Alternatively, the keyboard sequence
Shift+Ctrl+P toggles the visibility of the Profiles area.

Event Area 7

The event area lists individual trace events.

The event area is a resizable pane which contains a scrollable list of events with 7 columns
of information.

Offset

The offset of the event is shown.

Event

The event name or number is shown.

CPU

For kernel events, the CPU on which the event was logged is shown. For non-kernel
events, the CPU number is not available.

Process

The name of the process or process ID of the event is shown.
7-46

The NightTrace Main Window
Thread

The thread name of the event or system thread ID of the event is shown. For kernel
events, thread names are only available if user trace data sets are added and the
application logging the events uses the thread-aware version of the NightTrace Log-
ging API. See “Threads and Logging” on page 2-26 for more information.

Time (sec)

Indicates the time within the data set of the event in seconds.

Tag

Indicates the name of the tag, if any, associated with the event.

The event in the middle of the list which is marked with ---> on the left and highlighted in
a salmon background is the event at the current timeline.

Using the UpArrow and DownArrow keys causes the current timeline to advance one
event, either backward or forward, respectively.

Using the PageUp and PageDown keys causes the current timeline to advance to the
previous or next page of events, respectively. A page in this case being defined by the
number of events visible in the events list.

Right-clicking a row in the events list causes a new tag to be created and associated with
the event.

Selecting a row in the list causes the Event Detail area to display event details related to
the newly selected event.

The Events area can be hidden by clearing the Show Events checkbox from the View
menu of the NightTrace Main window. Alternatively, the keyboard sequence
Shift+Ctrl+E toggles the visibility of the Events area.

Event Detail Area 7

The event detail area lists additional information about the selected event in the Event
area.

The event detail area is a resizable pane which contains a scrollable list of event informa-
tion which includes the following lines:

Offset

The offset of the event is shown.

Detail

For kernel events, a descriptive explanation is included.
7-47

NightTrace RT User’s Guide
Args

The value of any arguments associated with the event are displayed.

Tag

For tagged events, the tag name is displayed.

Notation

For tagged events with annotations, the annotation is displayed.

The Event Detail area can be hidden by clearing the Show Text checkbox from the
View menu of the NightTrace Main window. Alternatively, the keyboard sequence
Shift+Ctrl+T toggles the visibility of the Event Detail area.

Trace Segment Statistic Area 7

The trace segment area lists individual statistics about individual data segments in the data
set.

The trace segment area is a resizable pane which contains a scrollable list of segments
with 7 columns of information.

Type

This column contains an indicator of the type of data in the segment, either K for
kernel data and U for user data.

Trace Segment

This column contains the name of the data segment. If the data segment came from
a file, the name of the file is used. If it came from a streaming daemon, then the dae-
mon handle from the Daemon Control area is used.

Count

This column contains the number of events in the data segment.

Lost

This column contains the number of events that were lost. Event loss can occur
when the daemon cannot copy events quickly enough from the memory buffers to
the output device. See “Preventing Trace Event Loss” on page 5-1 for more infor-
mation.
7-48

The NightTrace Main Window
Duration

This column displays the timespan of events in the trace data segment in units of
seconds.

Target

This column displays the system from which the trace data was generated.

Unsaved

This column contains an indicator when the trace data segment has not yet been
saved. This only occurs when streaming live data directly into NightTrace.

Double-clicking an entry in the list launches the Trace Segment Header Informa-
tion dialog, which displays detailed information about the trace data segment.

The Trace Segment Statistic area can be hidden by clearing the Show Segments
checkbox from the View menu of the NightTrace Main window. Alternatively, the
keyboard sequence Shift+Ctrl+S toggles the visibility of the Trace Segment Statis-
tic area.
7-49

NightTrace RT User’s Guide
Daemon Control Area 7

The daemon control area displays information about the daemons defined in the current
session and allows you to control their execution.

NightTrace allows users to manage user and kernel NightTrace daemons using daemon
definitions which are saved as part of the session in the session configuration file (see
“Session Configuration Files” on page 6-24). These definitions include daemon collection
modes and settings, daemon priorities and CPU bindings, and data output formats, as well
as the trace event types that are logged by that particular daemon.

Individual daemons within a session may or may not be related to each other in any mean-
ingful way. One might use a session simply to hold several daemon definitions that are
commonly used, but not necessarily all at the same time.

Users can manage multiple daemons simultaneously on multiple target systems from a
central location and may start, stop, pause, and resume execution of any of the daemons
under its management. The user may also view statistics as trace data is being gathered as
well as dynamically enable and disable events while a particular daemon is executing.

In addition to sending trace output to a file for later analysis, NightTrace also offers a
streaming output method. When streaming, trace output is sent directly to the NightTrace
display buffer for immediate analysis even while additional trace data is being collected.

Double-clicking or selecting and pressing Enter on an entry in the Daemon Control Area
brings up the Daemon Definition Dialog for the daemon associated with that entry (see
“Daemon Definition Dialog” on page 7-57).

Figure 7-27. Daemon Control Area

Type

Indicates what type of trace events the daemon is logging.

U indicates that the associated daemon is logging user trace
events

K indicates that the associated daemon is logging kernel trace
events

The type of trace event that the daemon is logging is configured by selecting either
the Kernel or the User Application radio button in the Trace section on the
General page of the Daemon Definition dialog (see “General” on page 7-62).
7-50

The NightTrace Main Window
Daemon

The name of the daemon as configured in the Name field on the General page of
the Daemon Definition dialog (see “Name” on page 7-62).

NOTE

The Daemon is merely a label to aid the user in identifying spe-
cific daemons with a session. It has no external meaning and is
unrelated to the NightTrace API.

Target

The name of the system on which the associated daemon is running.

The target system is specified in the Target System field on the General page of
the Daemon Definition dialog (see “Target System” on page 7-63).

State

The state of the daemon.

Logging indicates the daemon is currently capturing events

Halted indicates the daemon is not executing

Paused indicates the daemon is started but is not capturing
events

While paused, attempts to log events from user applica-
tions or via the operating system kernel are discarded.
Note that these are not considered lost events (see “Lost”
on page 7-52).

Pausing indicates the daemon is going from a Logging state to a
Paused state

Resuming indicates the daemon is going from a Paused state to a
Logging state

Launching indicates the daemon is going from a Halted state to a
Logging state

Halting indicates the daemon is going from a Paused or Log-
ging state to a Halted state

Attached

The number of user application threads or processes that are associated with the dae-
mon.
7-51

NightTrace RT User’s Guide
Logged

The number of trace events that have been written to the stream or written to the file
by the associated daemon.

Buffer

The number of trace events currently held in the trace buffers that has not yet been
copied to the trace file or stream.

These events can be explicitly flushed from the buffers by pressing the Flush but-
ton.

Lost

Lost events occur when the daemon cannot keep up with the rate at which events are
being added to the buffer. See “Preventing Trace Event Loss” on page 5-1 for more
information.

NOTE

Events that are discarded when a daemon is Paused (see “State”
on page 7-51) are not included in the Lost count.

Also, events that are discarded when the daemon is in Buffer
Wrap mode (see “Buffer Wrap” on page 7-65) (i.e. older events
being discarded in favor of new ones) are not included in the Lost
count.

The area located at the bottom of the Daemon Control Area contains a number of buttons
which control the daemons currently selected in the Daemon Control Area.

Launch

Accelerator: Ctrl+L

Starts execution of the daemon(s) currently selected in the Daemon Control Area.

NOTE

Starting a daemon does not imply that the daemon begins to col-
lect events.

Launch operations are time consuming and involve possibly connecting to a target
system, user authentication, etc. Once the daemon is launched, it is more efficient to
utilize the Pause and Resume operations which require less time and resources.
7-52

The NightTrace Main Window
Halt

Accelerator: Ctrl+H

Stops execution of the daemon(s) currently selected in the Daemon Control Area.

The connection to the target system is terminated by this operation. Once the dae-
mon is launched, it may be more efficient to utilize the Pause and Resume oper-
ations.

Pause

Pauses the execution of the daemon(s) currently selected in the Daemon Control
Area.

NOTE

When a daemon is paused, incoming trace events are discarded
without notice.

Resume

Accelerator: Ctrl+R

Resumes execution of the daemon(s) currently selected in the Daemon Control
Area. Once resumed, incoming events are placed into the daemon buffer for subse-
quent processing by the daemon.

Flush

Flushes trace events from the buffers associated with the daemon(s) currently
selected in the Daemon Control Area to either the NightTrace display buffer (see
“Stream” on page 7-64) or to the output file (see “Output File” on page 7-65).

Display

When data from the selected daemon(s) is being streamed to the NightTrace display
buffer (as specified by the setting of the Stream checkbox on the General page of
the Daemon Definition dialog (see “General” on page 7-62)), pressing this but-
ton causes a flush of the data currently in the trace buffer to the NightTrace display
buffer. If no display pages currently exist, a default display page will be created
when this button is pressed.

NOTE

The user must scroll the NightTrace display or zoom out in order
to see the most up-to-date data.

When data from the selected daemon(s) is written to output files, pressing this but-
ton causes the data in the output file to be displayed in the NightTrace display.
7-53

NightTrace RT User’s Guide
Trace Events...

Presents the Enable/Disable Trace Events dialog (see “Enable / Disable Trace
Events” on page 7-55) allowing the user to dynamically enable or disable selected
trace event types while a particular daemon is running. A currently executing dae-
mon must be selected from the Daemon Control Area.
7-54

The NightTrace Main Window
Enable / Disable Trace Events 7

The Enable/Disable Trace Events dialog allows the user to dynamically enable or
disable selected trace event types while a particular daemon is running. This dialog is
opened by selecting a currently executing daemon from the Daemon Control Area and
pressing the Trace Events... button in the Daemon Control Area of the NightTrace
Main window (see “Daemon Control Area” on page 7-50).

Figure 7-28. Enable / Disable Trace Events dialog

Disabled Events

This is a list of user trace or kernel trace event types that are disabled.

Disabled events are not logged to daemon buffers and therefore are not included in
event trace outputs.
7-55

NightTrace RT User’s Guide
Enabled Events

This is a list of user trace or kernel trace event types that are enabled.

Enabled events are allowed to be placed into daemon buffers and are subsequently
transferred to the output device (see “Trace Events Output” on page 7-64).

Enable -->

Moves the selected items from the Disabled Events list or the Trace Event or
Range field to the Enabled Events list.

<-- Disable

Moves the selected items from the Enabled Events list or the Trace Event or
Range field to the Disabled Events list.

Trace Event or Range

Allows the user to enter a particular trace event type (or range of trace event types)
and subsequently Enable --> or Disable --> it.

The user may use the event name associated with the event type (e.g.
SYSCALL_RESUME) or the numerical value of the trace event type (e.g.
4131).

The user may also enter a range of values either using the event names or their
numerical values (e.g. IRQ_ENTRY-IRQ_EXIT or 4305-4306).

Use Event Names

Allows the user to view the event names of the trace event types in the Disabled
Events and Enabled Events lists instead of their numerical values.

For user trace events, the user may load user-defined event map files which
associate meaningful names with the user trace event ID numbers (see “Event Map
Files” on page 6-11).
7-56

The NightTrace Main Window
Daemon Definition Dialog 7

The Daemon Definition dialog allows the user to create and modify the various aspects
of a daemon configuration.

Figure 7-29. Daemon Definition dialog

The Daemon Definition dialog is divided into a number of pages that contain specific
information about the current configuration. These pages are:

- General

This page contains information such as the name of the daemon configuration, the
target system on which the daemon will run, the user’s login on that system, and set-
tings specifying whether kernel or user application tracing will be performed. Items
related to trace events output such as the names of output and key files and settings
such as whether or not streaming will be performed by this daemon are found on this
page as well.

See “General” on page 7-62 for more detailed information.
7-57

NightTrace RT User’s Guide
- User Trace

This page contains settings for user trace daemons such as locking policies associ-
ated with the daemon, shared memory permissions, and the duration of the times-
tamp heartbeat, as well as specifications for the size and flush threshold of the user
event buffer.

See “User Trace” on page 7-67 for more detailed information.

- Events

This page allows the user to specify which events may be logged while tracing.

See “Events” on page 7-70 for more detailed information.

- Runtime

This page allows the user to specify the scheduling policy, priority and CPU bias for
the daemon.

See “Runtime” on page 7-72 for more detailed information.

- Other

This page allows the user to specify advanced settings with respect to the transfer of
trace data from the daemon to the NightTrace display buffer.

See “Other” on page 7-74 for more detailed information.

The following buttons appear at the bottom of the Daemon Definition dialog and have
the specified meaning:

OK

This button applies changes made and closes the Daemon Definition dialog.

Apply

This button applies changes made but leaves the Daemon Definition dialog open.

Reset

This button restores the values of all items to the previously-applied values and
leaves the Daemon Definition dialog open.

Import...

Presents the Import Daemon Definition dialog (see “Import Daemon Defini-
tion” on page 7-60) allowing the user to define daemon attributes based on a user
application running on a remote system.
7-58

The NightTrace Main Window
Cancel

This button restores the values of all items to the previously-applied values and
closes the Daemon Definition dialog.
7-59

NightTrace RT User’s Guide
Import Daemon Definition 7

This dialog allows the user to define daemon attributes based on a running user applica-
tion containing NightTrace API calls. The Import Daemon Definition dialog is pre-
sented following user authentication (see “Login” on page 7-18 and “Enter Password” on
page 7-18).

The user may select an application, running on the specified target system, from which
they wish to import trace-related attributes.

Figure 7-30. Import Daemon Definition dialog

Program ID

The process ID (PID) of the Program on the remote system.

Program

The name of the user application containing trace_ calls on the remote system.

User

The user who invoked the Program on the remote system.

Key File

The filename which is used to calculate the shared memory segment identifier asso-
ciated with the logging of user trace events. See “Key File” on page 7-64 for more
information.
7-60

The NightTrace Main Window
The following buttons appear at the bottom of the Import Daemon Definition dialog
and have the specified meaning:

OK

Imports daemon attributes into the current daemon definition from the user applica-
tion selected in the list.

Refresh

Queries the specified target system for user applications making trace-related calls.

Cancel

This button closes the Import Daemon Definition dialog without importing any
daemon attributes from any of the listed applications.

Help

Brings up online help for this dialog.
7-61

NightTrace RT User’s Guide
General 7

The General page of the Daemon Definition dialog (see “Daemon Definition Dialog”
on page 7-57) contains information such as the name of the daemon configuration, the tar-
get system on which the daemon will run, the user’s login on that system, and settings
specifying whether kernel or user application tracing will be performed. Items related to
trace events output such as the names of output and key files and settings such as whether
or not streaming will be performed by this daemon are found on this page as well.

Figure 7-31. Daemon Definition dialog - General

Target 7

Name

The name for this daemon definition.

This field is automatically populated with the name daemon_x where x is a num-
ber, starting at 0, which increments with each new daemon definition.

The Name is merely a label to aid the user in identifying specific daemons with a
session. It has no external meaning and is unrelated to the NightTrace API. The
user may change this to a name of their choosing.
7-62

The NightTrace Main Window
Target System

The system on which this trace daemon will run.

User

The name of the user on the specified Target System responsible for running this
daemon.

Trace

Indicates what type of trace events this daemon will be logging.

Kernel

Indicates that the daemon is logging kernel trace events.

Kernel events are automatically generated by the operating system kernel
when a kernel daemon is initiated if the operating system kernel was built with
tracing support.

For systems running RedHawk Linux, see the Concurrent Real-Time Linux -
RT User Guide (0898004) for more detailed information.

User Application

Indicates that the daemon is logging user trace events.

User trace events are generated by:

- user applications that use the NightTrace API

- the NightProbe tool (see the description of the To
NightTrace menu item in the chapter titled “Using the Data
Recording Window” in the NightProbe User’s Guide.

- the Nightview tool (see the description of the TracePoint menu
item) in the NightView User’s Guide.

Timing Source

By default, an architecture-specific clock is used to timestamp trace events. On
iHawk systems, the Time Stamp Counter is used.

NightTrace can also specify the Real-Time Clock and Interrupt Module (RCIM) as a
timestamp source (see “Timestamps” on page 1-2 for more information). This is
most useful when concurrent traces running on multiple systems are desired. Using
the RCIM as a timing device allows NightTrace to present the user with a synchro-
nized view of concurrent activities on those systems.

Default

On iHawk systems, the Intel Time Stamp Counter is used.
7-63

NightTrace RT User’s Guide
RCIM Tick

Specifies that the Real-Time Clock and Interrupt Module (RCIM) tick clock
will be used to timestamp trace events.

NOTE

Use of this option requires that an RCIM board is installed and
configured on the target system.

Trace Events Output 7

Stream

When checked, this specifies that streaming is in effect so that the output trace
events will go directly to the NightTrace display buffer. Otherwise, the output will
be written to the Output File (see below).

Key File

Specifies a filename which is used to calculate the shared memory segment identi-
fier associated with the logging of user trace events. The daemon and the Night-
Trace API use the ftok(3) service to map the specified filename to a shared mem-
ory identifier as used by shmat(2).

NOTE

When the output method is NOT streaming (see Stream above),
the Key File defines the name of the Output File where trace
events are written (see “Output File” on page 7-65).

The Key File is relative to the target system. It does not necessarily need to be
accessible from the host system (the system where the NightTrace GUI is running);
however, that can be convenient for subsequent analysis via NightTrace.

Furthermore, the Key File does not have to pre-exist. If a user application has not
already created it via a NightTrace API call, the daemon will create the file if it does
not exist.

Browse...

Brings up a standard file selection dialog so that the user may navigate to the
desired location of the Key File.

In order to browse, the Target System (see “Target System” on page 7-63)
must be operational. The file selection dialog invoked by that button shows
files relative to the Target System.
7-64

The NightTrace Main Window
Output File

The name of the file to which trace events are written.

The Output File is relative to the target system. It does not necessarily need to be
accessible from the host system (the system where the NightTrace GUI is running);
however, that can be convenient for subsequent analysis via NightTrace.

NOTE

When the output method is NOT streaming (see Stream above),
the Key File (see “Key File” on page 7-64) defines the name of
the Output File.

Browse...

Brings up a standard file selection dialog so that the user may navigate to the
desired location of the Output File.

In order to browse, the Target System (see “Target System” on page 7-63)
must be operational. The file selection dialog invoked by that button shows
files relative to the Target System.

File Wrap

When checked, allows the user to specify the Maximum File Size for the Key
File/Output File.

Maximum File Size

The maximum number of bytes for the Key File/Output File.

When the Maximum File Size is reached, subsequent events will overwrite
the oldest events. NightTrace automatically detects this and presents events in
chronological order, from oldest to newest. Events that are discarded due to
File Wrap are not considered “lost events” (see “Lost” on page 7-52) in sta-
tistics provided by the NightTrace.

NOTE

For a daemon capturing kernel trace events, the file wrap sizes
that the user specifies are rounded up to a multiple of kernel buffer
sizes.

Buffer Wrap

When this is checked, the daemon will overwrite the least recently recorded events
in the trace buffer when it reaches its maximum size.
7-65

NightTrace RT User’s Guide
For user trace events, the size and number of shared memory buffers are specified in
the Number of Buffers and Buffer Size fields on the User Trace page of the
Daemon Definition dialog (see “User Trace” on page 7-67).

For kernel trace events, the size and number of kernel buffers are defined in the
Trace Buffer Size and Number of Buffers fields on the Other page of the
Daemon Definition dialog (see “Other” on page 7-74).
7-66

The NightTrace Main Window
User Trace 7

The User Trace page of the Daemon Definition dialog (see “Daemon Definition Dia-
log” on page 7-57) contains settings for locking policies associated with the daemon and
the corresponding user applications using the NightTrace API, shared memory permis-
sions, as well as specifications of the size and number of user event buffers.

Figure 7-32. Daemon Definition dialog - User Trace

Locking Policy 7

Page Locking

When the Lock Critical Pages option is selected, the daemon and user applica-
tions associated with this daemon lock down the required pages and unlock them
when the NightTrace API is terminated. Selecting the Default option will allow
pages to be locked if the user application has already specified this option and is
already executing, otherwise no page locking will occur. Selecting No Locking
will ensure that pages are not locked even if the user application has specified page
locking and has already begun executing -- in this case, the daemon will fail to
launch with an appropriate diagnostic.

Shared Memory 7

The daemon and the user applications communicate with each other through shared mem-
ory. The shared memory segment identifier is calculated from the Key File setting (see
“Key File” on page 7-64).
7-67

NightTrace RT User’s Guide
The shared memory segment is automatically destroyed after the last user application
and/or the daemon exits normally (if the daemon or user applications are aborted, the
shared memory segment will remain; it will be reinitialized on subsequent use).

shmid Permissions

If the daemon is initiated before any user applications, then the shared memory seg-
ment will be created with the specified permissions.

User Event Buffer 7

Number of Buffers

The number of buffers used to hold events generated by the application.

The specified value should be a power of 2. If it is not, the value is automatically
rounded up to the next power of 2.

Buffer Size

The size of each buffer used to hold event generated by the application in units of
raw events. API calls which log just an event ID consume the space required by one
raw event. Other API calls which provide additional parameters with the event ID
require additional space.

The specified value should be a power of 2. If it is not, the value is automatically
rounded up to the next power of 2.

Inheritance 7

When the daemon starts up, certain settings can be inherited from a running user
application that has set up a trace definition.

The NightTrace API trace_begin() call allows the user to define the following
settings in a user application:

- those values listed under the Page Locking categories on this page

- the Number of Buffers and Buffer Size also found on this page

- the setting for the Timing Source which appears on the General
page of the Daemon Definition dialog (see “General” on page
7-62)

See “trace_begin” on page 2-6 for more information on this API.

Inherit settings from running user application

When this is checked, trace settings defined by a running user application are
silently preferred if those definitions differ from those made in NightTrace.
7-68

The NightTrace Main Window
If not checked, trace settings defined by user applications must match those in
the current daemon definition.

See above for details on which trace settings may be inherited.
7-69

NightTrace RT User’s Guide
Events 7

The Events page of the Daemon Definition dialog (see “Daemon Definition Dialog”
on page 7-57) allows the user to specify which trace event types will be handled by the
daemon.

The user may also change this list dynamically while the daemon is executing by pressing
the Trace Events... button in the Daemon Control Area of the NightTrace Main win-
dow (see “Daemon Control Area” on page 7-50) to bring up the Enable/Disable Trace
Events dialog (see “Enable / Disable Trace Events” on page 7-55).

Figure 7-33. Daemon Definition dialog - Events

Disabled Events

This is a list of user trace or kernel trace event types that are disabled.

Disabled events are not logged to daemon buffers and therefore are not included in
event trace outputs.

Enabled Events

This is a list of user trace or kernel trace event types that are enabled.
7-70

The NightTrace Main Window
Enabled events are allowed to be placed into daemon buffers and are subsequently
transferred to the output device (see “Trace Events Output” on page 7-64).

Enable -->

Moves the selected items from the Disabled Events list or Trace Event or
Range field to the Enabled Events list.

<-- Disable

Moves the selected items from the Enabled Events list or Trace Event or
Range field to the Disabled Events list.

Trace Event or Range

Allows the user to enter a particular trace event type (or range of trace event types)
and subsequently Enable --> or Disable --> it.

The user may use the event name associated with the event type (e.g.
SYSCALL_RESUME) or the numerical value of the trace event type (e.g.
4131).

The user may also enter a range of values either using the event names or their
numerical values (e.g. IRQ_ENTRY-IRQ_EXIT or 4305-4306).

Use Event Names

Allows the user to view the event names of the trace event types in the Disabled
Events and Enabled Events lists instead of their numerical values.

For user trace events, the user may load user-defined event map files which
associate meaningful names with the user trace event ID numbers (see “Event Map
Files” on page 6-11).
7-71

NightTrace RT User’s Guide
Runtime 7

The Runtime page of the Daemon Definition dialog (see “Daemon Definition Dia-
log” on page 7-57) allows the user to specify the scheduling policy, CPU bias, and mem-
ory binding policies for the daemon.

Figure 7-34. Daemon Definition dialog - Runtime

Scheduling 7

Scheduling Policy

POSIX defines three types of policies that control the way a process is scheduled by
the operating system. They are SCHED_FIFO (FIFO), SCHED_RR (Round
Robin), and SCHED_OTHER (Time-Sharing). Each of these scheduling policies
is associated with one of the System V scheduler classes. See the RedHawk Linux
User's Guide (0898004) for more detailed information regarding these policies and
their associated classes.

FIFO

The FIFO (first–in–first–out) policy (SCHED_FIFO) is associated with the
fixed-priority class in which critical processes can run in predetermined
sequence. Fixed priorities never change except when a user requests a
change.

This policy is almost identical to the Round Robin (SCHED_RR) policy.
The only difference is that a process scheduled under the FIFO policy does
7-72

The NightTrace Main Window
not have an associated time quantum. As a result, as long as a process sched-
uled under the FIFO policy is the highest priority process scheduled on a par-
ticular CPU, it will continue to execute until it voluntarily blocks.

Round Robin

The Round Robin policy (SCHED_RR), like the FIFO policy, is associated
with the fixed-priority class in which critical processes can run in predeter-
mined sequence. Fixed priorities never change except when a user requests a
change.

A process that is scheduled under this policy (as opposed to the FIFO policy)
has an associated time quantum.

Time-Sharing

The Time-Shar ing policy (SCHED_OTHER) is associated with the
time-sharing class, changing priorities dynamically and assigning time slices
of different lengths to processes in order to provide good response time to
interactive processes and good throughput to CPU-bound processes.

Priority

The Priority is relative to the selected Scheduling Policy (see “Scheduling Pol-
icy” on page 7-72) and the range of allowable values is dependent on the operating
system.

On most Linux systems, the priority values for the FIFO class include 1..99, where
99 is the most urgent user priority available on the system.

It is recommended that a reasonable urgent priority is specified when using the
FIFO scheduling policy to prevent event loss.

CPU Bias 7

CPU Bias

Selection of a specific CPU or set of CPUs can be advantageous to prevent event
loss and reduce daemon intrusion on the rest of the system.

All CPUs

Selects all CPUs on the target system.
7-73

NightTrace RT User’s Guide
Other 7

The Other page of the Daemon Definition dialog (see “Daemon Definition Dialog” on
page 7-57) allows the user to specify advanced settings with respect to the transfer of trace
data from the daemon to the NightTrace display buffer.

Figure 7-35. Daemon Definition dialog - Other

Streaming Options 7

Stream Buffer Size

The number of bytes for the buffer that the NightTrace uses to hold data from the
daemon before sending it to the NightTrace display buffer.

NOTE

This is an internal buffer. You should not need to adjust the size
of this buffer unless NightTrace finds that it cannot transfer data
quickly enough between the daemon and the NightTrace analyzer.
In such a circumstance, the daemon is forced into a Paused state
(see “State” on page 7-51).
7-74

The NightTrace Main Window
Stream Packet Size

The amount of data (in bytes) sent from the daemon to the NightTrace analyzer for
individual I/O transfers. Different network configurations may have different opti-
mal packet sizes.

Incomplete Packet Interval

This setting is intended for applications that have very low event rates. The user
may not want to wait for a full packet (specified by the Stream Packet Size) to
fill before the data is sent to the analyzer. If a packet cannot be filled in this amount
of time, the available trace data is sent anyway.

NOTE

The user can always hit the Flush button (see “Flush” on page
7-53) which causes all data in the trace buffer to be immediately
transmitted across the stream.

Kernel Trace Buffer Options 7

The kernel modules collect data into one or more trace buffers as events are logged. The
trace daemon started by the server (ntraceserv) either writes events from these buffers
to a file or stream.

Increasing the following settings should help avoid data loss.

Kernel trace with default number of trace buffers

On Linux, if the default is used, the number of trace buffers used by the kernel mod-
ules to collect data defers to the server (ntraceserv) which starts the daemon.

Number of Trace Buffers

The desired number of trace buffers used by the kernel modules to collect
data.

Kernel trace with default trace buffer size

On Linux, if the default is used, the default trace buffer size defers to the server
(ntraceserv) which starts the daemon.

Trace Buffer Size

The desired size of the trace buffers used by the kernel modules to collect
data.
7-75

NightTrace RT User’s Guide
Kernel Trace CPU Options 7

By default, kernel tracing logs events that occur on all CPUs. You can restrict the CPUs
where tracing occurs by selecting individual CPU checkboxes.
7-76

8
Chapter 8Profiles

8
8
8

The Profiles dialog provides a centralized point of control to select, create, manage, and
utilize profiles.

In NightTrace, a condition is the "logical and" of several criteria such as event codes, pro-
cesses, and threads. Conditions may be used to examine matching events of interest.

Profiles include any condition or state you use within a NightTrace session, including
those used in search and summary operations.

A state profile is a combination of two conditions which identify the start and end require-
ments of a state. All other profiles are simply condition profiles, although they can be as
complex as you need them to be.

Profiles can be used in:

• Searches

• Summaries

• Display page graph objects

The Profiles dialog consists of the following areas:

• The profile menu bar

• The profile tool bar

• The profile text area

• The profile definition area

• The profile action control area
8-1

NightTrace RT User’s Guide
Figure 8-1. Profiles Dialog

Profile Menu Bar 8

The Profiles dialog menu bar provides access to the following menus:

• File

• Profile

• Search

• Summary

• Results

• Edit

• Help
8-2

Profiles
Each menu is described in the sections that follow.

File Menu 8

The File menu allows you to save the current session, raise the NightTrace Main win-
dow and close the Profiles dialog.

Figure 8-2. File menu

Save Session...

Accelerator: Ctrl+S

Save Session saves the current session to a session configuration file (see “Ses-
sion Configuration Files” on page 6-24 for a complete description of the contents of
a session).

Save Session allows for quickly saving a session. The user is not prompted for
the filenames where the session, trace data, or display pages are to be saved. These
are automatically saved in appropriately named files in the current working direc-
tory.

If the current session has not been saved to a file in the past, the session is automati-
cally saved to a new session configuration file. The new filename appears in the
window title.

If the current session was loaded from or previously saved to a session configuration
file, the session is saved to that file.

Trace data that has been touched is saved by Save Session. Touched trace data
includes trace data modified by discarding events (see “Discard Events...” on page
9-12). In addition, trace data from a trace data segment file where one or more seg-
ments have been saved to another trace data segment file or closed is saved.

If the trace data was loaded from a previously saved trace data segment file, the data
is saved to that file. If the trace data has never been saved to a trace data segment
file, the data is automatically saved to a newly created trace data segment file

If the display pages were loaded from a previously saved display page file, the page
is saved to that file.

If the display page has never been saved to a display page file, the page is automati-
cally saved to a newly created display page file.
8-3

NightTrace RT User’s Guide
NightTrace Main Window

NightTrace Main Window opens the NightTrace Main window and brings it
to the front of the screen.

Close

Accelerator: Ctrl+W

Close closes the Profiles dialog.

If modifications have been made in the Profiles dialog and have not yet been saved
via an Add, Apply, Search/Close or Summarize action, the changes are dis-
carded.

Profile Menu 8

The Profile menu allows you to select from previously-defined profiles and export pro-
files in the form of NightProbe Analysis API source code.

Figure 8-3. Profile menu

Choose Profile...

Accelerator: Ctrl+P

Choose Profile allows you to select from a list of all previously defined profiles
from the Choose Profile dialog as shown below:
8-4

Profiles
Figure 8-4. Chose Profile dialog

Selecting a profile from the list will cause the Profiles dialog to refer to the selected
profile. If the Import Reference to Profile checkbox is checked, the Profiles
dialog will be set to use an expression that refers to the selected profile. Otherwise,
the entire profile is copied into the Profiles dialog and it becomes the current pro-
file. Use the former technique to add additional constraints on an existing profile
without disassociating from that profile. Thus subsequent changes to the selected
profile will still be reflected in the new profile. Use the latter technique to create a
copy of the selected profile or to modify that profile.

View Next Profile

Accelerator: UpArrow

This menu option populates the Profiles dialog with the previous profile in the cir-
cular list of profiles.

View Previous Profile

Accelerator: DownArrow

This menu option populates the Profiles dialog with the next profile in the circular
list of profiles.

Export...

This menu choice opens the Export Profiles to Analysis API Source dialog
to automatically generate source code defining and referencing the profile currently
displayed in the Profiles dialog. See “Export...” on page 7-32 for more informa-
tion.
8-5

NightTrace RT User’s Guide
Search Menu 8

The Search menu allows you to search forward or backward for the current profile and
set search options.

Figure 8-5. Search menu

Search Backward

Accelerator: Comma

Search backward for the profile as defined in the Profiles dialog.

Search Forward

Accelerator: Period

Search forward for the profile as defined in the Profiles dialog.

Options...

Options launches the Search Options dialog which allows you to define the
search scope and control search wrap options. See “Options...” on page 7-9 for
more information.

Summary Menu 8

The Summary menu allows you to execute a summary for the current profile and set
summary options.

Figure 8-6. Summary menu

Summarize

Accelerator: Ctrl+Z

Execute a summary for the profile as defined in the Profiles dialog.
8-6

Profiles
Options

Options launches the Summary Options dialog which allows you to define the
summary scope and control summary display options. See “Options...” on page
7-11 for more information.

Results Menu 8

The Results menu manipulates the results text area.

Figure 8-7. Results menu

Clear Text

Clears the summary and search text area.

Save Text

Saves the search and summary text from the results text area to a file. A standard
file selection dialog is displayed.

Show Text

The Show Text checkbox controls whether the search and summary text area is
visible in the Profiles dialog.

Edit Menu 8

The Edit menu allows you to launch support dialogs which control how event information
is displayed.

Figure 8-8. Edit menu
8-7

NightTrace RT User’s Guide
Event Maps...

Accelerator: Ctrl+M

This menu item launches the Edit String Table dialog which allows you to
change or add textual handles to event ID numbers and control which arguments are
printed when event detail is shown. See Section “Edit String Table” on page 9-18 for
more information.

Tags...

Accelerator: Ctrl+T

This menu item launches the Tags dialog which lists all event tags, their time, off-
set and distance from the current time line, as well as any textual annotations. See
Section “Tags” on page 9-14 for more information.

String Tables...

This menu item launches the Edit String Tables dialog which allows you to cus-
tomize textual information associated with event descriptions. String tables are also
useful in forming expressions used in profiles and display graph objects. See Sec-
tion “Edit String Tables” on page 9-16 for more information.

Distinguish Processes

This menu item causes NightTrace to automatically change all process name
description to include the system process (or thread) ID as part of the process name,
for any process name which refers to more than one thread ID or process ID. For
example, if a data set includes events from two processes name app, the process
name description might be displayed as app_23983 and app_23997.

Help Menu 8

The Help menu allows you to obtain help on any portion of the Profiles dialog or on
other topics. The menu is common between the NightTrace Main window, the Pro-
files dialog, and Display page windows. See “Help” on page 7-41 for more information.

Profile Tool Bar 8

The Profiles tool bar provides icons for commonly used actions.

Figure 8-9. Profiles Tool Bar
8-8

Profiles
8

Profile Text Area 8

The profile text area shows the results of search and summary operations. The area may
be scrolled to view previously executed searches and summaries.

Text in the area may be saved to a file using the Save Text... option from the Results
menu.

Text in the area may be cleared using the Clear Text option from the Results menu.

The profile text area itself may be hidden or shown using the Show Text checkbox in the
Results menu.

Save the current NightTrace session

Search backward for the current profile

Search forward for the current profile

Summarize the current profile

Populate the dialog with the previous profile
in the circular list of profiles

Populate the dialog with the next profile in the
circular list of profiles

Open Tags dialog

Open the Edit Event Map dialog

Open the Edit String Tables dialog
8-9

NightTrace RT User’s Guide
Profile Definition Area 8

This area allows you to define new profiles using drop-down option lists for commonly
requested conditions and states. Profiles can be further customized providing you com-
plete control over detailed profile conditions.

Figure 8-10. Profile Definition Area

Key/Value

The Key/Value option list provides a starting point for profile definition. Selecting
items from the option list populates the individual condition fields below with the
values and expressions required to specify the key (and value) you have selected.

The option list provides the following items:

Condition

This option populates the condition fields to create a condition profile which
will match any event, unconditionally. It is useful when you wish to manually
enter conditions starting from a clean template.

State

This option populates the condition fields to create a state profile which starts
on any event and ends on any event. It is useful when you wish to manually
enter state conditions starting from a clean template.
8-10

Profiles
System Call All Events
System Call Enter Events
System Call Exit Events
System Call State

These options populate the condition fields such that the profile detects the
existence of a specific system call, as indicated by the specific option selected.
After selecting one of these options, a system call list will launch allowing
you to select an individual system call.

Selecting System Call All Events will match events representing the
entry, suspension, resumption, and exit of a system call.

Selecting System Call Enter Events or System Call Exit Events will
match events representing entry and resumption of a system call, or suspen-
sion and exit, respectively.

Selecting System Call State defines a state which begins when a system
calls is entered or resumed, and terminates when the system call is suspended
or exits.

When a specific system call is selected, the name of the system call will
appear in a read-only text field beneath the Key/Value option list. The spe-
cific system call associated with the profile can be changed by pressing the
Values... button and selecting a different value from the list.

These options desensitized if kernel trace data is not loaded.

NOTE

Multiple system calls may be selected from the Key/Value pop-up
menu.

Exception All Events
Exception Enter Events
Exception Exit Events
Exception State

These options populate the condition fields such that the profile detects the
existence of a specific machine exception, as indicated by the specific option
selected. After selecting one of these options, an exception list will launch
allowing you to select an individual exception.

Selecting Exception All Events will match events representing the entry,
suspension, resumption, and exit of an exception.

Selecting Exception Enter Events or Exception Exit Events will
match events representing entry and resumption of an exception, or suspen-
sion and exit, respectively.

Selecting Exception State defines a state which begins when an exception
is entered or resumed, and terminates when the exception is suspended or
exits.
8-11

NightTrace RT User’s Guide
When a specific exception is selected, the name of the exception will appear
in a read-only text field beneath the Key/Value option list. The specific
exception associated with the profile can be changed by pressing the Val-
ues... button and selecting a different value from the list.

These options desensitized if kernel trace data is not loaded.

NOTE

Multiple exceptions may be selected from the Key/Value pop-up
menu.

Interrupt All Events
Interrupt Enter Events
Interrupt Exit Events
Interrupt State

These options populate the condition fields such that the profile detects the
existence of a specific machine interrupt, as indicated by the specific option
selected. After selecting one of these options, an interrupt list will launch
allowing you to select an individual interrupt.

Selecting Interrupt All Events will match events representing the entry,
suspension, resumption, and exit of an interrupt.

Selecting Interrupt Enter Events or Interrupt Exit Events will match
events representing entry and resumption of an interrupt, or suspension and
exit, respectively.

Selecting Interrupt State defines a state which begins when an interrupt is
entered and terminates when the interrupt exits.

When a specific interrupt is selected, the name of the interrupt will appear in a
read-only text field beneath the Key/Value option list. The specific interrupt
associated with the profile can be changed by pressing the Values... button
and selecting a different value from the list.

These options desensitized if kernel trace data is not loaded.

NOTE

Multiple interrupts may be selected from the Key/Value pop-up
menu.

Tagged Events

This option populates the condition fields such that the profile detects the
event associated with the tag that you select from the list that is launched
when choosing this option.
8-12

Profiles
When a specific tag is selected, the name of the tag will appear in a read-only
text field beneath the Key/Value option list. The specific tag associated with
the profile can be changed by pressing the Values... button and selecting a
different value from the list.

If no tagged events exist, this menu option is desensitized.

You can tag events with labels and annotations using the Tag icon on the tool
bar, the Tags... option from the Edit dialog, as well as other actions in the
NightTrace main window and in Display pages (see page 7-47 for informa-
tion).

NOTE

Multiple tags may be selected from the Key/Value pop-up menu.

Choose Profile...

You can select from previously-defined profiles using the Choose Profile... but-
ton.

Selecting an entry from the list displayed by this button populates the dialog with
the conditions associated with that profile. The current profile becomes the profile
you selected. Subsequent changes will be applied to the profile if you press the
Apply, Search/Close, or Summarize buttons. A new profile will be created if
you press the Add button.

Alternatively, when checking the Import Reference to Profile checkbox in the
Choose Profile... list, the dialog will be populated with a condition that refer-
ences the selected profile. This technique allows you to add additional conditions to
the selected profile while preserving the named association. Thus subsequent
changes to the selected profile will be reflected in the new profile you create.

After choosing a Key/Value pair or previously defined profile using the Choose Pro-
file... button, you can further customize the condition or state by using the individual text
fields and selection lists in the dialog.

Any customized changes which are subsequently made appear in the criteria text fields
with a salmon-colored background. Pressing the Reset button restores the default condi-
tions that were populated when you selected the profile.

Other Profiles

This area allows you to create a new profile with additional constraints associated
with a previously-defined condition.

Pressing Logical And... or Logical Or... launches a list of known profiles and
imports the profile you select by reference into the dialog, combining it with the cur-
rent profile via a boolean AND or OR operation, respectively.
8-13

NightTrace RT User’s Guide
Events
Start Events
End Events

The Events, Start Events and End Events criteria allows you restrict the con-
dition to events listed in the text fields. Values in the text fields are required to be a
comma-separated list of numeric event numbers or ranges or event names. The
Browse... buttons to the right of the text fields allows you to select from a list of
known event names. The values ALL, ALLADA, ALLKERNEL, and ALLUSER
are special entries referring to classes of events, as indicated by their name.

Start Events and End Events are only shown for state profiles whereas Events
is only shown for condition profiles. Start Events and End Events refers to
events which are candidates for the beginning or end of a state, respectively.
Events refers to all events.

Exclude Events

Exclude Events allows you restrict the condition to events that are not listed in
the text field. It is only shown for condition profiles.

Values in the text field are required to be a comma-separated list of numeric event
numbers or ranges or event names. The Browse... button to the right of the text
field allows you to select from a list of known event names. The value NONE is a
special entry referring to null set of events, which means that no events are
excluded.

Condition
Start Condition
End Condition

The Condit ion , Start Condit ion , and End Condit ion criteria allows you
restrict the profile using NightTrace’s expression language. Values in the text fields
are required to be a boolean NightTrace expressions whose syntax is roughly that of
the C language, with built-in functions for accessing attributes of events. See
“Using Expressions” on page 11-1 for more information on expression syntax and
semantics.

Start Condition and End Condition are only shown for state profiles whereas
Condition is only shown for condition profiles. Start Condition and End Con-
dition refers to the conditions which must be met for the beginning or end of a state,
respectively, whereas Condition applies globally to the profile.

Processes

The Processes criterion allows you restrict the condition to events generated by
processes that are specified in the text field.

Values in the text field are required to be a comma-separated list of process names or
PIDs (see getpid(2) and gettid(2)). The Browse... button to the right of
the text field allows you to select from a list of known processes.
8-14

Profiles
NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the process identifier
is the thread’s TID (see gettid(2)).

If multiple processes have the same name (perhaps two unrelated programs both
called a.out) selecting that name from the list or placing that text in the text field
will match both processes. Similarly, for multi-threaded processes, the specified
process name will match all threads within the process.

Placing a process name in the Processes list is equivalent to adding a condition
restriction using the following NightTrace expression:

process_name == “a.out”

Threads

The Threads criterion allows you restrict the condition to events generated by
threads that are specified in the text field.

Values in the text field are required to be a comma-separated list of thread IDs (see
gettid(2)). The Browse... button to the right of the text field allows you to
select from a list of known threads by name. This list is only available when user
trace data from registered threads is loaded. See “Threads and Logging” on page
2-26 for more information.

If multiple threads with the same name exist, specifying the thread name will match
all such threads.

Placing a thread name in the Threads list is equivalent to adding to adding a condi-
tion restriction using the following NightTrace expression:

thread_name == “mythread”

Nodes

The Nodes criterion allows you restrict the condition to events generated on the
systems that are specified in the text field.

Values in the text field are required to be a comma-separated list of system names
(see hostname(1)). The Browse... button to the right of the text field allows
you to select from a list of known hosts present in the loaded trace data sets by
name.

Use of the Nodes condition is only useful when capturing and analyzing data from
multiple systems using the Real-time Clock and Interrupt Module (RCIM) as a syn-
chronized timing source. See the Real-Time Clock and Interrupt Module User’s
Guide (0891082) for more information.

Placing a node name in the Nodes list is equivalent to adding to adding a condition
restriction using the following NightTrace expression:
8-15

NightTrace RT User’s Guide
node_name == “a.out”

Output Script

This text field does not impose a constraint on the profile. It allows you to specify
an alternative shell script that is executed for summary operations. By default, the
following scripts are executed for condition and state profile summaries, respec-
tively:

• /usr/lib/NightTrace/bin/event-summary.sh

• /usr/lib/NightTrace/bin/state-summary.sh

All script output generated to stdout will be displayed in the Profiles result area.
Output from stderr is not captured.

Summary data is passed to the specified script via environment variables. See
“Summary Script Environment Variables” on page 8-20 for more information.

The path to the summary output script is saved as part of a NightTrace session and
can be utilized in subsequent ntrace invocations, including batch mode summary
execution via command line options.

CPUs

The CPUs selector area allows you to place CPU restrictions on the profile. Use
the checkboxes to select the CPUs of interest.

Name

The Name text field defines the name of the profile. The profile’s name is auto-
matically set when selecting a previously-defined profile or when creating a new
profile. You can change the name by typing in a modified name in the text field.
Changing the name of a profile does not, in and of itself, create a new profile. A
new profile is created if you press the Add button. Pressing the Apply,
Search/Close, or Summaries buttons applies the name change (and all other
outstanding profiles changes) to the current profile as well as executes the associ-
ated action, if any.

Action Control Area 8

The Action Control Area allows you to create new profiles, apply changes to existing pro-
files, and execute search and summary actions.
8-16

Profiles
Add

The Add button creates a new profile based on the conditions in the Profiles dia-
log. If another profile with the same name already exists, the new profile’s name is
automatically adjusted to be unique by appending a numeric value to the name.

Apply

The Apply button modifies an existing profile based on the conditions in the Pro-
files dialog. If the profile did not previously exist, it adds the profile.

Search/Close

The Search/Close button executes a forward search for the selected profile and
closes the Profiles dialog.

The scope of the search, the actions to be taken upon a match, and wrapping options
can be modified using the Options... option of the Search menu item (see
“Options...” on page 8-6 for more information).

When the Profiles dialog is launched from the Search... menu choice of the
Search menu (or via Ctrl+F), the default focus for the action control buttons is on
the Search/Close button. This allows you to quickly define your search criteria
and execute the search. For example, the following keyboard and mouse sequences
might be used:

1. Press Ctrl+F to launch the Profiles dialog for searching

2. Left-Click the Key/Value option list

3. Select System Call All Events

4. Select a system call from the popup dialog

5. Press Enter to close the pop-up dialog

6. Press Enter to execute the search and close the Profiles dialog

Forward and backward searches on the current profile can be executed directly from
the NightTrace Main window and from Display Page window, without launch-
ing the Profiles dialog, by pressing the Period and Comma key, respectively.
Additionally, forward and backward search icons appear in the tool bars of those
windows.

NOTE

To execute a backward search from within the Profiles dialog,
Add or Apply the profile condition, if changed, and then press
the Backward Search icon on the tool bar or use the Search
Backward option from the Search menu.

Summarize

Accelerator: Ctrl+Z
8-17

NightTrace RT User’s Guide
The Summarize button executes a summary action based on the current profile.

Summaries can also be executed by pressing the Summary icon on the tool bar or
selecting the Summarize option from the Summary menu.

The scope, action, and results options can be modified using the Options... option
of the Summary menu.

See “Summarizing Statistical Information” on page 8-19 for more information.

Close

Accelerator: Esc

The Close button closes the Profiles dialog, discarding any profile changes that
have not been applied or added.
8-18

Profiles
Summarizing Statistical Information 8

A variety of statistics are available for summaries of condition and state profiles.

Condition Summaries 8

The following statistics are provided for condition profile summaries:

• The number of matches summarized

• The minimum time gap between matches and the ordinal trace event
number (offset) where it began

• The maximum time gap between matches and the ordinal trace event
number (offset) where it began

• The average time gap between matches

State Summaries 8

The following statistics are generated for state profile summaries:

• The number of matches summarized

• The minimum time gap between matches and the ordinal trace event
number (offset) where it began

• The maximum time gap between matches and the ordinal trace event
number (offset) where it began

• The average time gap between matches

• The sum of the time gaps between matches

• The minimum time duration of a match and the ordinal trace event number
(offset) where it began

• The maximum time duration of a match and the ordinal trace event number
(offset) where it began

• The average time duration of a match

• The sum of the time durations of matches

Summary Options 8

The scope, timeline actions, graphical actions, and results options can be modified using
the Options... option of the Summary menu.
8-19

NightTrace RT User’s Guide
See “Options...” on page 7-11 for more information.

Summary Scripts 8

Summary results are printed by invoking summary scripts to display the statistical infor-
mation. By default, NightTrace provides an event summary and a state summary script
that print the statistics as described above.

User-define scripts may be used in place of the default scripts. See “Output Script” on
page 8-16 for more information on specifying user-defined scripts.

Summary Script Environment Variables 8

The following summary environment variables are passed to summary scripts

Table 8-1. Summary Script Environment Variables

Variable Meaning

NT_SUM_TYPE Contains text describing the type of summary:
“Event Summary” or “State Summary”.

NT_SUM_NUM The number of occurrences of the state or
event, expressed in decimal integer format.

NT_SUM_MIN_GAP The minimum gap between occurrences of the
state or event, expressed in seconds in decimal
floating point format.

NT_SUM_MAX_GAP The maximum gap between occurrences of the
state or event, expressed in seconds in decimal
floating point format.

NT_SUM_AVG_GAP The average gap between occurrences of the
state or event, expressed in seconds in decimal
floating point format.

NT_SUM_TOTAL_GAP The total time for all gaps between occurrences
of the state or event, expressed in seconds in
decimal floating point format.

NT_SUM_MIN_GAP_OFFSET The offset at which the minimum gap between
occurrences of the state or event occurred
expressed in decimal integer format.

NT_SUM_MAX_GAP_OFFSET The offset at which the maximum gap between
occurrences of the state or event occurred
expressed in decimal integer format.

NT_SUM_MIN_DURATION For states, the minimum state duration
expressed in seconds in decimal floating point
format.
8-20

Profiles
NT_SUM_MAX_DURATION For states, the maximum state duration
expressed in seconds in decimal floating point
format.

NT_SUM_AVG_DURATION For states, the average state duration expressed
in seconds in decimal floating point format.

NT_SUM_TOTAL_DURATION For states, the total of all state durations,
expressed in seconds in decimal floating point
format.

NT_SUM_MIN_DURATION_OFFSET For states, the offset at which the minimum
state duration occurred, expressed in decimal
integer format.

NT_SUM_MAX_DURATION_OFFSET For states, the offset at which the maximum
state duration occurred, expressed in decimal
integer format.

Table 8-1. Summary Script Environment Variables

Variable Meaning
8-21

NightTrace RT User’s Guide
8-22

9
Chapter 9Display Pages

9
9
9

A display page lets you view trace event data by allowing you to:

• create and configure display objects to graphically depict your trace ses-
sion (see Chapter 10 “Display Objects”)

• define profiles of conditions and states (see Chapter 8 “Profiles”) to aid in
the analysis of trace data

• search for certain trace events based on specific critiera (see
“Search/Close” on page 8-17)

• summarize data into statistical information regarding particular trace
events and states (see “Summarizing Statistical Information” on page 8-19)

Default Display Page 9

The default display page contains a number of preconfigured display objects (see
Chapter 10 “Display Objects”) that allow you to analyze your trace data with minimal
effort. If this page does not exactly meet your needs, you can modify it according to your
specifications. NightTrace brings up this page in view mode (see “Switch between view
and edit mode” on page 9-27 for more information).

A default display page contains a Grid Label (see “Grid Label” on page 10-4) and a State
Graph (see “State Graph” on page 10-7) for each registered thread logging trace events in
your trace event file(s). Each State Graph is configured to display only those events
logged by a particular registered thread; the associated Grid Label identifies that thread.
An additional State Graph is also created which is configured to display all user events
from all threads combined. If the number of threads is so large that their associated State
Graphs will not all fit on the grid, then NightTrace stops creating state graphs.

NOTE:

To distinguish between individual threads, threads must be regis-
tered. See “Threads and Logging” on page 2-26 for more infor-
mation.

In addition, Data Boxes (see “Data Box” on page 10-5) appear at the top of the default dis-
play page containing information related to the current trace event. This information
includes the offset, trace event ID, and first trace event argument logged by that particular
trace event.
9-1

NightTrace RT User’s Guide
Figure 9-1 shows a default display page for two threads, sin and cos, logging trace
events. The information in the Data Boxes at the top of the grid relate to the last trace
event on or before the current time line. A State Graph has been created showing the trace
events logged by the thread jane; another has been created showing those logged by
tarzan. A third State Graph appears below the others displaying the trace events logged
by both threads.

Figure 9-1. A Default Display Page

A display page consists of the following components:

• Menu Bar (see “Menu Bar” on page 9-3)

• Tool Bar (see “Display Page Tool Bar” on page 9-26)

• Message Display Area (see “Message Display Area” on page 9-29)

• Grid (see “Grid” on page 9-29)

• Interval Scroll Bar (see “Interval Scroll Bar” on page 9-31)

• Interval Control Area (see “Interval Control Area” on page 9-32)
9-2

Display Pages
Menu Bar 9

The menu bar on all display pages provides access to the following menus:

• Page (see “Page” on page 9-3)

• Search (see “Search” on page 9-5)

• Summary (see “Summary” on page 9-6)

• Graph (see “Graph” on page 9-7)

• Event (see “Event” on page 9-9)

• Edit (see “Edit” on page 9-13)

• Zoom (see “Zoom” on page 9-24)

• View (see “View” on page 9-25)

• Help (see “Help” on page 9-26)

Page 9

The Page menu allows you save the current NightTrace session, save changes to the cur-
rent display page, and raise and close windows.

Figure 9-2. Display Page - Page Menu

Save Session

Accellerator: Ctrl+S

Save Session saves the current session to a session configuration file (see “Ses-
sion Configuration Files” on page 6-24 for a complete description of the contents of
a session).

Save Session allows for quickly saving a session. The user is not prompted for
the filenames where the session, trace data, or display pages are to be saved. These
9-3

NightTrace RT User’s Guide
are automatically saved in appropriately named files in the current working direc-
tory.

If the current session has not been saved to a file in the past, the session is automati-
cally saved to a new session configuration file. The new filename appears in the
Trace Segment Statistics area above the Daemon Control Area in the Night-
Trace Main window (see “Trace Segment Statistic Area” on page 7-48).

If the current session was loaded from or previously saved to a session configuration
file, the session is saved to that file.

Trace data that has been touched is saved by Save Session. Touched trace data
includes trace data modified by discarding events (see “Discard Events...” on page
9-12).

If the trace data was loaded from a previously saved trace data segment file, the data
is saved to that file.

If the trace data has never been saved to a trace data segment file, the data is auto-
matically saved to a newly created trace data segment file

Display pages are saved by Save Session. These display pages include those
pages created by the Custom Kernel Page menu item under the Pages menu of
the NightTrace Main window (see “Custom Kernel Page...” on page 7-24) as well as
any modified pages.

If the display page was loaded from a previously saved display page file, the page is
saved to that file.

If the display page has never been saved to a display page file, the page is automati-
cally saved to a newly created display page file

Save

Saves the current display page configuration (see “Configuration Files” on page
6-14) to the external file specified with the Save As... menu item. Any changes
you have made since the last save operation will be saved to that file; this menu item
is disabled (desensitized) if no changes have been made.

This menu item is also disabled if this is a new display page; in this case, use the
Save As menu item to specify a filename.

Save As...

Presents a file selection dialog to specify a filename to which the current display
page configuration will be saved (see “Configuration Files” on page 6-14).

Refresh

Accellerator: Ctrl+L

This menu choice refreshes the display page. Display pages may become stale after
entering Edit mode and making configuration changes.
9-4

Display Pages
NightTrace Main Window...

Opens the NightTrace Main Window if not currently opened; otherwise, brings the
NightTrace Main Window to the foreground.

See Chapter 7 “The NightTrace Main Window” for more information.

Close

Ends the current editing/viewing session, resets all field and radio button settings,
and clears the message display area. If you have unsaved changes, a warning dialog
box appears, asking if you want to save your changes.

Search 9

The Search menu allows you to search forward or backward for the current profile and
set search options.

Figure 9-3. Display Page - Search Menu

Search...

Accelerator: Ctrl+F

Displays the Profiles dialog allowing the user to define the search criteria and to execute
a search. See “Profiles” on page 8-1 for more information.

Search Backward

Accelerator: Comma

Search backward for the profile as defined in the Profiles dialog.

Search Forward

Accelerator: Period

Search forward for the profile as defined in the Profiles dialog.
9-5

NightTrace RT User’s Guide
Options...

Options launches the Search Options dialog which allows you to define the
search domain and control search wrap options. See “Options...” on page 7-9 for
more information.

Summary 9

The Summary menu allows you to execute a summary for the current profile and set
summary options.

Figure 9-4. Display Page - Summary Menu

Summary...

Accelerator: Ctrl+U

Opens the Profiles dialog (see “Profiles” on page 8-1) allowing the user to select a pro-
file to summarize or define a new profile to summarize.

Summarize

Accelerator: Ctrl+Z

Execute a summary for the profile as defined in the Profiles dialog.

Options

Options launches the Summary Options dialog which allows you to define the
summary domain and control summary display options. See “Options...” on page
7-11 for more information.
9-6

Display Pages
Graph 9

The Graph menu manipulates how events are displayed, allowing you to create and mod-
ify labels, state, data, and event graphs, and data boxes.

Figure 9-5. Display Page - Graph Menu

Select All

Selects every display object on the grid. This is useful when you want to perform
some operation on every display object on the grid (for example, moving or deleting
every display object).

NOTE

This operation is enabled only when the display page is in edit
mode (see “Switch between view and edit mode” on page 9-27).

Deselect All

Deselects every selected display object on the grid.

NOTE

This operation is enabled only when the display page is in edit
mode (see “Switch between view and edit mode” on page 9-27).
9-7

NightTrace RT User’s Guide
Configure...

Opens the configuration dialog(s) for the selected display object(s).

NOTE

Double-clicking on a particular display object will bring up the
configuration dialog for that display object.

See “Configuring Display Objects” on page 10-15 for details.

This operation is enabled only when the display page is in edit mode (see “Switch
between view and edit mode” on page 9-27).

Copy

Accelerator: Ctrl+C

Copy the selected display object allowing the user to subsequently paste a copy of
the display object on the Grid using the Paste menu item.

Only one display object may be copied at a time. In addition, Column display
objects (see “Column” on page 10-6) cannot be copied.

NOTE

This operation is enabled only when the display page is in edit
mode (see “Switch between view and edit mode” on page 9-27).

Paste

Accelerator: Ctrl+V

When this menu item is selected, the mouse pointer becomes a crosshair allowing
the user to position and size the display object previously copied using the Copy
menu item.

See “Creating Display Objects” on page 10-12 for more information.

NOTE

This operation is enabled only when the display page is in edit
mode (see “Switch between view and edit mode” on page 9-27).

Delete

Deletes the selected display object(s).
9-8

Display Pages
This operation is enabled only when the display page is in edit mode (see “Switch
between view and edit mode” on page 9-27).

Grid Label

Allows the user to add a Grid Label to the current display page.

See “Grid Label” on page 10-4 for more information.

Data Box

Allows the user to add a Data Box to the current display page.

See “Data Box” on page 10-5 for more information.

Column

Allows the user to add a Column to the current display page.

See “Column” on page 10-6 for more information.

Event Graph

Allows the user to add a Event Graph to the current display page.

See “Event Graph” on page 10-6 for more information.

State Graph

Allows the user to add a State Graph to the current display page.

See “State Graph” on page 10-7 for more information.

Data Graph

Allows the user to add a Data Graph to the current display page.

See “Data Graph” on page 10-8 for more information.

Ruler

Allows the user to add a Ruler to the current display page.

See “Ruler” on page 10-10 for more information.

Event 9

The Event menu allows you to traverse the trace data set, change the current timeline,
mark and tag events, and discard uninteresting events.
9-9

NightTrace RT User’s Guide
Figure 9-6. Display Page - Event Menu

Go To Event...

Acceleartor: Ctrl+G

This menu choice allows you to enter an event offset or time and causes the current
timeline to be moved to the specified event or time. The value entered is considered
to be an event offset if it is an integer value. A floating point value is interpretted as
an event time. If the value entered refers to an event or time earlier than the first
event or later than the last event, the current timeline is moved to the beginning or
end of the data set, respsectively.

Go To Previous Event

Accelerator: Ctrl+V

This menu choice moves the current timeline to the event that was previously the
assocated with the current timeline. This allows you to flip the timeline back and
forth between two events of interest.

Go To Preceeding Event

Accelerator: Shift+Comma

This menu choice moves the current timeline to the immediately preceeding event.

Go To Next Event

Accelerator: Shift+Period

This menu choice moves the current timeline to the next event.
9-10

Display Pages
Scroll Forward

Accelerator: right-arrow

Scrolls the interval forward Increment seconds or Increment percent of the cur-
rent display interval allowing you to examine different intervals in your trace ses-
sion (see “Increment...” on page 9-11).

See “Interval Scroll Bar” on page 9-31 for related information.

Scroll Backward

Accelerator: left-arrow

Scrolls the interval backward Increment seconds or Increment percent of the
current display interval allowing you to examine different intervals in your trace ses-
sion (see “Increment...” on page 9-11).

See “Interval Scroll Bar” on page 9-31 for related information.

Increment...

Controls how much the current interval scrolls (and the slider moves) when you:

- click on an arrowhead of the interval scroll bar (see “Interval Scroll
Bar” on page 9-31)

- click between an arrowhead and the slider on the interval scroll bar

- select either the Scroll Forward or Scroll Backward menu item
from the Event menu of any display page (see “Event” on page 9-9)

- use the < or > accelerator keys to scroll forward or backward (Note
that it is not necessary to press the Shift key when using these accel-
erators.)

This field may contain either a percentage or an absolute amount of time in seconds.
The default is 25%.

A valid change keeps percentages greater than 0% and less than or equal to 100%
and absolute numbers greater than 0 microseconds and less than or equal to the end
time of the trace session. If you set Increment to the word default or a space,
NightTrace resets Increment to the default value.

If Increment is less than 100% when you click on an interval scroll bar arrowhead,
you see part of the previous interval in this interval; if Increment is equal to 100%,
you see a completely new interval.

Center

Accelerator: Ctrl+N

This menu choice adjusts the interval start and end values such that the current time-
line is centered in the interval. The current timeline does not move in time, just in
position on your screen.
9-11

NightTrace RT User’s Guide
Mark

Accelerator: Ctrl+M

This menu choice sets the Mark to the value of the current timeline. There is only
one Mark which is used to defined a region. Alternatively, you can tag as many
events you wish with Tags and add annotations to them. The Mark appears as tri-
angle on the Ruler. A region is defined as the events between the Mark and the cur-
rent timeline. You can see the time between the cursor and the Mark by using the
Ctrl+Middle keyboard/mouse sequence.

Tag

Accelerator: Shift+T

This menu choice creates a new tag at the location of the current timeline. The tag is
automatically given a unique tag number and appears on the Ruler as a black rect-
angle with the tag number displayed in white. Double-clicking on the tag marker
opens the Edit Tag Notation dialog for that tag.

Alternatively, you use Right+Click the mouse on an individual event in the display
and the Create New Tag dialog is launched which allows you to name the tag and
associate it with the event. Tag names can be changed using the Tags dialog.

Discard Events...

Accelerator: Ctrl+D

This menu choice launches the Discard Events... dialog.

Figure 9-7. Discard Events dialog

The offset and timespan of the current region (the events included between the
Mark and the current timeline) are described in the dialog.

You can discard the events within the region or all events outside of the region.
9-12

Display Pages
Discarded events are immediately removed from the loaded data set, however, if the
data set was originally loaded from a file, the file will not be changed unless you
save the session.

It is often convenient to reduce the data set size to just events of interest using Dis-
card Events... and then save a copy of the session using the Save Session
Copy menu choice from the NightTrace menu in the NightTrace Main win-
dow. This creates a stand-alone copy of the current session with just the reduced
data, leaving all files related to the original session unmodified.

Edit 9

The Edit menu allows you to launch support dialogs which control how event information
is displayed.

Figure 9-8. Display Page - Edit Menu

Edit Mode

This menu choice toggles the display page mode from edit to view. While in edit
mode, you can create new display page objects and change the configuration of
existing ones. In view mode, you can analyze trace data.

Event Maps...

Accelerator: Ctrl+M

This menu item launches the Edit String Table dialog which allows you to
change or add textual handles to event ID numbers and control which arguments are
printed when event detail is shown. See Section “Edit String Table” on page 9-18 for
more information.

Tags...

Accelerator: Ctrl+T

This menu choice launches the Tags dialog which lists all event tags, their time,
offset and distance from the current time line, as well as any textual annotations. See
Section “Tags” on page 9-14 for more information.
9-13

NightTrace RT User’s Guide
String Tables...

Opens the Edit String Tables dialog (see “Edit String Tables” on page 9-16)
which provides a list of current string tables by name as well as the number of
entries in each table. This dialog also allows you to add new string tables, and edit
or remove existing string tables.

New Profile...

Accelerator: Ctrl+P

Opens the Profiles dialog allowing you to define a new profile for reference,
search or summary. See Chapter 8, “Profiles” for more information.

Distinguish Processes

This menu item causes NightTrace to automatically change all process name description
to include the system process (or thread) ID as part of the process name, for any process
name which refers to more than one thread ID or process ID. For example, if a data set
includes events from two processes name app, the process name description might be dis-
played as app_23983 and app_23997.

Tags 9

The Tags dialog is opened by selecting the Tags... menu item (see “Tags...” on page
9-13) from the Edit menu of any display page.

The Tags dialog provides a summary of all tags in the current session. This dialog also
allows for the manipulation of tags, determining time differences between two selected
tags, and seeing the time difference between each tag and the current time line on the dis-
play page.

Figure 9-9. Tags dialog
9-14

Display Pages
To see the time difference between two tags, select the first tag of interest and then, hold-
ing the Ctrl key, select the second tag of interest. If only one tag is selected, the time dif-
ference between the selected tag and the current time is displayed.

Name

The name of the tag as entered in the Create New Tag dialog or a default name as
generated by NightTrace.

Time

The time on the Ruler where the tag can be found; for tagged events, this corre-
sponds to the event time.

Event Offset

For tagged events, this is the offset of the event tagged; for tagged times, this is the
offset of the last event before the tag.

Current Time Diff

Shows the difference in seconds between the current time line on the display page
and the time associated with the tag.

The following buttons appear at the bottom of the Tags dialog:

Goto

Applies to one selected tag; places the current time line on the selected tag on the
display page; this can also be accomplished by double-clicking on the tag in the list.

Note...

Applies to one selected tag; opens the Tags Annotation dialog which allows you
to add or edit notes describing the event. The notes associated with a tag are dis-
played in the NightTrace Main window Event Detail Area (see “Event Detail
Area” on page 7-47) for the currently selected event and in a stand-alone dialog
when you double click a tag marker on the “Ruler” on page 10-10 in Display
Pages.

Remove

Applies to one or more selected tags; permanently removes the tag(s) from the dis-
play page.

Name

Opens the Set Tag Name dialog as shown in Figure 9-10 allowing the user to
change the name of the tag selected in the Tags dialog.
9-15

NightTrace RT User’s Guide
Figure 9-10. Set Tag Name dialog

Close

Dismisses the Tags dialog.

Help

Displays online help for the Tags dialog.

Edit String Tables 9

The Edit String Tables dialog is opened by selecting the String Tables... menu item
(see “String Tables...” on page 9-14) from the Edit menu of any display page. In addition,
this dialog can be accessed by double-clicking the string tables icon in the NightTrace tool
bar.

The Edit String Tables dialog provides a list of current string tables alphabetized by
name as well as the number of entries in each table.

Figure 9-11. Edit String Tables dialog
9-16

Display Pages
Add...

Presents the Add Table dialog as shown in Figure 9-12 allowing the user to specify
the name of the new string table.

Figure 9-12. Add Table dialog

After it has been added, the new string table will appear in the alphabetized list in
the Edit String Tables dialog.

Edit

Opens the Edit String Table dialog (see “Edit String Table” on page 9-18) which
allows you to edit the selected string table.

NOTE

You may double-click on any item in the list to edit that individual
string table.

Remove

Removes the selected table(s).

NOTE

Outstanding references to removed tables remain in the session,
possibly resulting in error messages in display pages, searches,
and summaries.

In addition, tables populated by default by NightTrace (e.g.
event, boolean) may not be removed; NightTrace silently
ignores the remove request for such tables.
9-17

NightTrace RT User’s Guide
Save

Presents a standard file selection dialog as shown allowing the user to save the
selected table(s) to an ASCII NightTrace configuration file for use in other Night-
Trace sessions.

NOTE

Only the selected string tables are saved.

The tables in this saved file may be imported into NightTrace by:

- specifying the file as an argument on the command line when starting
NightTrace (see Chapter 6 “Invoking NightTrace”)

- opening the file in a NightTrace session by selecting the Open
Config File... menu choice from the NightTrace menu of the
NightTrace Main window.

Close

Dismisses the Edit String Tables dialog.

Edit String Table 9

The Edit String Table dialog lists each string representation and its associated integer
value in a particular string table and allows you to add, edit, or remove entries from that
string table.

The Edit String Table dialog is opened by double-clicking the desired string table entry
in the Edit String Tables dialog (see “Edit String Tables” on page 9-16) or by pressing
the Edit... button while the desired string table entry is selected in the Edit String
Tables dialog.
9-18

Display Pages
Figure 9-13. Edit String Table dialog

Two columns of are information are shown, the textual String value and the numeric Index
value. Clicking the column headers change the sort key and order of the information.

View Value

Provides two options for viewing integer values in table:

View Value in Decimal

Displays each integer value in decimal representation.

View Value in Hexadecimal

Displays each integer value in hexadecimal representation.

Add...

Presents the Edit String Table Entry dialog (see “Edit String Table Entry” on
page 9-20) allowing the user to add an entry to the current string table.

NOTE

When adding to the event string table, the Edit Event Map
Entry dialog is presented (see “Edit Event Map Entry” on page
9-22).
9-19

NightTrace RT User’s Guide
Edit...

Presents the Edit String Table Entry dialog (see “Edit String Table Entry” on
page 9-20) allowing the user to edit the selected entry in the current string table.

NOTE

When editing an entry in the event string table, the Edit Event
Map Entry dialog is presented (see “Edit Event Map Entry” on
page 9-22).

Default...

Presents the Edit String Table Entry dialog allowing the user to edit the default
string to use when the get_string() function (see “get_string()” on page
11-100) is passed an integer value that is not mapped to a string in the table.

Remove

Permanently removes selected table entries.

Close

Dismisses the Edit String Table dialog.

Edit String Table Entry 9

The Edit String Table Entry dialog allows the user to add a new entry or edit an exist-
ing entry in a particular string table.

See “Edit String Table” on page 9-18 to add, edit, or remove other entries in a string table.

NOTE

When adding or editing an entry in the entry string table, Night-
Trace presents the Edit Event Map Entry dialog (see “Edit
Event Map Entry” on page 9-22).
9-20

Display Pages
Figure 9-14. Edit String Table Entry dialog

Index

Numerical value of the string table entry.

String

String representation for the entry value.

The specified string may be a formatted string with format specifiers (see
“get_format()” on page 11-104). Arguments associated with these format specifiers
are added to this list using the Insert button on this dialog.

Figure 9-14 shows a String with a %d format specifer. The NightTrace expression
(see “NightTrace allows you to use expressions to aid in the analysis of trace data.”
on page 11-1) associated with that specifier, offset, can be seen in the Variable
Argument(s) for String Format Specifier(s) list.

Insert

Presents the Variable Argument dialog as shown in Figure 9-15 allowing the
user to associate a NightTrace expression (see “NightTrace allows you to use
expressions to aid in the analysis of trace data.” on page 11-1) with a format speci-
fier used in the String.

Figure 9-14 shows a String with a %d format specifer. The argument associated
with that specifier, offset, can be seen in the Variable Argument(s) for
String Format Specifier(s) list.
9-21

NightTrace RT User’s Guide
Figure 9-15. Variable Argument dialog

Edit

Presents the Variable Argument dialog as shown in Figure 9-15 allowing the
user to edit the NightTrace expression (see “NightTrace allows you to use expres-
sions to aid in the analysis of trace data.” on page 11-1) selected in the Variable
Argument(s) for String Format Specifier(s) list.

Remove

Removes the selected argument from the Variable Argument(s) for String
Format Specifier(s) list.

Edit Event Map Entry 9

The Edit Event Map Entry dialog allows the user to add a new entry or edit an existing
entry in the event string table.

See “Edit String Table” on page 9-18 to add, edit, or remove other entries in a string table.

Figure 9-16. Edit Event Map Entry dialog
9-22

Display Pages
Event Code

A valid integer in the range reserved for user trace events (0-4095, inclusive).

Event Name

A character string to be associated with the user trace event specified in Event
Code.

Trace event names must begin with a letter and consist solely of alphanumeric char-
acters and underscores.

In addition, the user may specify up to four arguments to display for the user defined trace
event. These arguments are displayed when:

- ntrace is invoked with the --listing (-l) option (see “-l --list-
ing” on page 6-2)

- the user middle clicks on an event in the display page grid (shown in the
Message Display Area)

- the Event Detail Area is shown on the NightTrace Main window

- when an event is found via the search mechanism (see “Search/Close” on
page 8-17), the event description is given in the Message Display Area (see
“Message Display Area” on page 9-29)

The following items allow the user to choose the base format in which to display each
argument. The format is specified by choosing one of the following from the drop-down
associated with that argument:

- Output event argument as float

- Output event argument as decimal

- Output event argument as hexadecimal

- Output event argument as float

Event Argument 1

Specifies whether the first argument is to be displayed and the base format to dis-
play that argument.

Event Argument 2

Specifies whether the second argument is to be displayed and the base format to dis-
play that argument.
9-23

NightTrace RT User’s Guide
Event Argument 3

Specifies whether the third argument is to be displayed and the base format to dis-
play that argument.

Event Argument 4

Specifies whether the fourth argument is to be displayed and the base format to dis-
play that argument.

Each combo box only allows for reasonable input as per the NightTrace API calls (see
“Understanding NightTrace Library Calls” on page 2-4). For instance:

- if an event argument is displayed, all prior arguments must be displayed
(i.e. cannot display Event Argument 2 if you are not displaying Event
Argument 1)

- if Event Argument 1 is output as float, Event Argument 2 must be
output as float or not output

- if Event Argument 2 is output as float, Event Argument 1 must be
output as float

Zoom 9

The Zoom menu allows you to zoom in and out and controls the zoom factor.

Figure 9-17. Display Page - Zoom Menu

Zoom Factor...

The menu choice allows you to set the zoom factor for subsequent Zoom In and
Zoom Out operations. The factor is entered as a floating point number; the zoom
factor must be a value greater than 1.0 and represents the additionl number of events
to be shown in the interval on a Zoom Out operation (factored by the current number
of events in the interval), and conversely on a Zoom In operation.

Zoom In

Accelerator: DownArrow
9-24

Display Pages
This menu choice zooms in by the current Zoom Factor.

Zoom Out

Accelerator: UpArrow

This menu choice zooms out by the current Zoom Factor.

Zoom To Show All

Accelerator: Alt+UpArrow

The menu choice zooms all the way out, displaying all events in the data set.

Zoom to Region

Accelerator: Ctrl+R

The menu choice changes the interval to include the events defined by the current
region. The current region is defined by the events bounded by the current Mark (
see “Mark” on page 9-12) and the current timeline.

View 9

The View menu controls which areas of the Display Page are visible and allows you to
scroll the grid area up and down.

Figure 9-18. Display Page - View Menu

Show Toolbar

Acceleartor: Ctrl+Shift+B

This menu choice toggles the visibility of the Display Page .

Show Text

Acceleartor: Ctrl+Shift+T

This menu choice toggles the visibility of the Display Page Message Display
Area.
9-25

NightTrace RT User’s Guide
Show Interval Fields

Acceleartor: Ctrl+Shift+I

This menu choice toggles the visibility of the Display Page Interval Control
Area.

Page Up Grid

Acceleartor: PageUp

This menu choice scrolls the display area of the grid up.

Page Down Grid

Acceleartor: PageDown

This menu choice scrolls the display area of the grid down.

Help 9

The Help menu allows you to obtain help on any portion of the Display Page window
or on other topics. The menu is common between the NightTrace Main window, the
Profiles dialog, and Display Page windows. See “Help” on page 7-41 for more infor-
mation.

Display Page Tool Bar 9

The Display Page tool bar provides icons for commonly used actions.

Figure 9-19. Display Page Tool Bar
9-26

Display Pages
9

Save the current NightTrace session

Search backward

Search forward

Summarize

Open profile dialog

Switch between view and edit mode

Go to event

Move timeline to previous location

Move timeline to preceeding event

Move timeline to next event

Adjust the interval to center the current time-
line

Create a tag at the current timeline

Set the Mark to the current timeline
9-27

NightTrace RT User’s Guide
The tool bar may be hidden by clearing the Show Toolbar checkbox in the View menu
of the Display Page window. Alternatively, the keyboard sequence Shift+Ctrl+B tog-
gles the visibility of the tool bar.

Discard events

Open Tags dialog

Open the Edit Event Map dialog

Open the Edit String Tables dialog

Zoom in

Zoom out

Zoom region
9-28

Display Pages
Message Display Area 9

The Message Display Area presents various diagnostic and informational messages.
Figure 9-20 shows some of these types of messages in a Message Display Area.

Figure 9-20. Message Display Area

The Message Display Area can include such messages as:

• error messages (e.g. from incorrect values entered in configuration dialogs)

• detailed textual information about specific events (see “Grid” on page
9-29)

• the time between the current time line and the mouse cursor (by pressing
mouse button 3 at a particular point on the grid)

• the time between the mouse cursor and the mark (see “Mark” on page
9-12)

• results of search operations (see “Search/Close” on page 8-17)

• results of summary operations (see “Summarizing Statistical Information”
on page 8-19)

Grid 9

The grid is a region of the display page that is filled with parallel rows and columns of
dots. These dots serve as reference points for display-object alignment. You can alter the
grid dimensions by changing the size of the display page. To change the display page size,
resize your window by using features of your window manager.
9-29

NightTrace RT User’s Guide
Figure 9-21. The Grid

NightTrace assigns each trace event in the trace session a unique ordinal number or offset
beginning with ordinal number 0. These ordinal numbers appear in the interval control
area and in the message display area. For more information on ordinal trace events, see
“Interval Control Area” on page 9-32.

Some display objects on the grid contain vertical lines. Each vertical line in a State Graph
(see “State Graph” on page 10-7) or Event Graph (see “Event Graph” on page 10-6) repre-
sents one or more user trace events, kernel trace events, or NightTrace internal trace
events. If more than one event is represented by a vertical line, zooming in will provide
sufficient resolution to display each trace event as a separate verticle line (see “Zoom In”
on page 9-24).

If you click on a trace event with mouse button 2, NightTrace writes information about
that trace event in the message display area. Each vertical line in a Data Graph (see “Data
Graph” on page 10-8) represents a trace event argument. If you click on a data value with
mouse button 3, NightTrace writes information about the data value in the message dis-
play area.

If your grid has a Column (see “Column” on page 10-6) and you have not already posi-
tioned your interval somewhere else, NightTrace displays in the Column the earliest 5 per-
cent of your trace session. Usually this information is uninteresting and you want to see
other parts of your trace session. The following list shows the ways you can get Night-
Trace to locate interesting parts of your trace session:

• Scroll through the interval using the interval scroll bar

• Zoom in or zoom out using interval push buttons

• Change the parameters defining the interval by editing its fields

• Use the Profiles dialog to search for a specific trace event or condition.
(See “Profiles” on page 8-1 for more information.)
9-30

Display Pages
Interval Scroll Bar 9

Moving the slider of the interval scroll bar allows you to examine different intervals in
your trace session. By moving the slider, you change the displays in display objects on the
grid and in the interval control area (see “Interval Control Area” on page 9-32). Changes
in the display objects are most obvious when you have a Column that contains both a State
Graph and a Ruler. See Chapter 10 “Display Objects” for more information on display
objects.

The interval scroll bar is horizontal and extends the entire width of the grid. The left
arrowhead represents the beginning of the entire trace session, not just the part displayed
on the grid or by the interval control area fields. The right arrowhead represents the end of
the entire trace session.

If you have not already positioned your interval somewhere else, the movable slider of the
interval scroll bar is adjacent to the scroll bar’s left arrowhead. When the slider is here, the
Start Time statistic in the interval control area is 0.0000000 seconds. The length of the
slider is proportionate to the amount of the trace session displayed in the interval. By
default, a display page shows 5% of a trace session.

In the following interval scroll bar descriptions, the fields in the interval control area that
are affected by the interval scroll bar include: Current Time, Start Time, End Time,
Start Event, End Event, and Increment. For more information on these fields, see
“Interval Control Area” on page 9-32.

Figure 9-22. The Interval Scroll Bar
9-31

NightTrace RT User’s Guide
Manipulating the interval scroll bar in the following ways has the following results.

Interval Control Area 9

The interval control area is a region of the display page that contains nine fields of
statistics. If you have not already positioned your interval somewhere else, NightTrace
displays in the interval control area the earliest 5 percent of your trace session. Usually
this information is uninteresting and you want to see other parts of your trace session. You
can do two things with the statistics in the interval control area:

• Read the fields to obtain information about the interval

• Edit the fields to change the interval

Table 9-1. Manipulating the Interval Scroll Bar

Action Mouse
Button Location Result

Click Any Left
arrowhead

If the interval scroll bar slider is not already at the leftmost position:

• Moves the slider to the left.
• Scrolls backward Increment seconds or Increment percent of

the current display interval.

Click Any Right
arrowhead

If the interval scroll bar slider is not already at the rightmost position:

• Moves the slider to the right.
• Scrolls forward Increment seconds or Increment percent of

the current display interval.

Click 1 Between an
arrowhead and
the slider

• Moves the slider to the side you clicked on.
• Scrolls the current interval by twice the number of seconds in

Increment or by twice the percentage in Increment.

Click or
Drag

2 Between an
arrowhead and
the slider

• Moves the slider where you clicked and/or dragged.
• Scrolls the current interval accordingly.
• If your current time line was not centered, centers it.

Drag 1 or 2 Slider (Same as preceding entry.)

Press and
Hold

Any Left or right
arrowhead

Causes animated scrolling of data in the direction the arrow points
9-32

Display Pages
Figure 9-23. Interval Control Area

All field values in the interval control area are non-negative numbers. Some fields have
default values. Time fields all display the time in seconds with the “s” suffix. A
description of each field follows. In the following text, interval is the time from Start
Time through End Time.

Start Time

The beginning time of the interval in seconds.

A valid change keeps Start Time less than the ending time in the trace session.
The new interval starts at the specified time. Time Length remains unchanged,
but other fields, including End Time, change appropriately.

If you set Start Time to the word start, NightTrace resets Start Time to the
start time (0 microseconds) of the trace session.

Start Event

The ordinal number (offset), not the trace event ID, of the first trace event in this
interval.

A valid change keeps Start Event less than the number of trace events logged in
the trace session. The new interval starts at the specified ordinal trace event number
(offset). Time Length remains unchanged, but other fields change appropriately.

If you set Start Event to the word start, NightTrace resets Start Event to 0
and Start Time to 0 microseconds.

Time Length

The amount of time between Start Time and End Time. Also known as the inter-
val.

A valid change keeps Time Length greater than 0 and less than or equal to the last
recorded time in the trace session. The new interval length is the specified length.
End Time and other fields change appropriately.

If you set Time Length to the word all or an arbitrarily large number, NightTrace
resets Time Length to the last time recorded in the trace event file(s) and changes
other fields appropriately.

Event Count

The quantity of trace events present in this interval. It is the difference between End
Event and Start Event plus one.
9-33

NightTrace RT User’s Guide
A valid change keeps Event Count less than or equal to the ordinal position (off-
set) of the last trace event recorded in the trace session. The new trace event count
is the specified count. Fields change appropriately.

If you set Event Count to the word all or an arbitrarily large number, NightTrace
resets Event Count to the total number of trace events in your trace event file(s)
and changes other fields appropriately.

End Time

The ending time of the interval in seconds.

A valid change keeps End Time greater than the beginning time in the trace ses-
sion and greater than or equal to Time Length. The new interval ends at the spec-
ified time. Time Length remains unchanged, but other fields, including Start
Time, change appropriately.

If you change End Time so it is smaller than Time Length, NightTrace sets End
Time to Time Length. If you set End Time to the word end or an arbitrarily
large number, NightTrace resets End Time to the last time recorded in the trace
event file(s) and changes other fields appropriately.

End Event

The ordinal number (offset), not the trace event ID, of the last trace event in this
interval.

A valid change keeps End Event non-negative. The new interval ends at the spec-
ified ordinal trace event number (offset). Time Length remains unchanged, but
other fields change appropriately.

If you set End Event to the word end, or an arbitrarily large number, NightTrace
resets End Event to the total number of trace events in your trace event file(s).

Current Time

The present time within the interval in seconds.

If the new current time is inside the current interval, the current time line moves
appropriately in any Columns (see “Column” on page 10-6) and the current interval
remains unchanged.

If the new current time is outside the current interval, the interval shifts so the cur-
rent time is centered in the interval, the current time line is centered in any Columns,
and the interval length remains unchanged.

Apply

Validates any field change(s) in the interval control area (see “Interval Control
Area” on page 9-32) and makes corresponding changes to other field(s), updates dis-
play objects on the grid (see “Grid” on page 9-29), and positions the current time
line appropriately.
9-34

Display Pages
Reset

Restores changed field(s) in the interval control area (see “Interval Control Area” on
page 9-32) to the value(s) they had the last time changes were applied.
9-35

NightTrace RT User’s Guide
9-36

10
Chapter 10Display Objects

10
10
10

A display page contains display objects which filter, process, and display information
based upon trace event data. These display objects are created and viewed on the display
page.

Display objects, which are created via the Graph menu (see “Graph” on page 9-7) on the
display page, can be thought of as combination filters and formatters for the trace event
data. Every time a display object is updated, it filters through the trace data. The display
object accepts input in the form of a trace event record, processes and reformats the infor-
mation, and displays it.

The following information is in a trace event record:

• numeric trace event ID

• global process identifier (PID)

• NightTrace thread identifier (TID)

• time

• ordinal number (offset)

• optional arguments

You can use NightTrace functions to express any of these values (see “Functions” on page
11-2).

Although trace event data contains simple events, it implicitly contains states. The con-
cepts of trace events and states are key to understanding display objects.

trace event Corresponds to the point in the execution of your application when a
trace_event() call was executed. All the data logged at that
time (trace event ID, arguments, etc.) is considered a trace event.

state A state is bounded by two trace events, a start event and an end
event. An instance of a state is the period of time between the start
event and end event, including the start and end events themselves.
Additional constraints may be specified in a state definition to further
constrain the state. Instances of individual states do not nest; that is,
once a state becomes active, events that might normally satisfy the
conditions for the start event are ignored until the end event is
encountered.

Different types of display objects display information in different ways. Depending on the
type of information you want to display, you choose the display object or objects you wish
to create. You can then configure those display objects to filter out unwanted data and dis-
play the information that you want.

All display objects are rectangular with user-specified dimensions and have the following
properties:
10-1

NightTrace RT User’s Guide
• Display objects can be dynamic or static. Dynamic means the contents
vary depending on values in the trace event file and may change depending
on the current trace event. Static means the contents do not change. All
display objects except Grid Labels are dynamic (see “Grid Label” on page
10-4).

• Display objects can be textual or graphical. Textual means the contents
consist of words or numbers. Graphical means the contents are lines or
shapes, like a bar chart.

• Display objects can be scrollable or non-scrollable. Scrollable means the
display object acts as a movable window into the trace event file.
10-2

Display Objects
Types of Display Objects 10

The basic types of display objects are listed below and are discussed in the following sec-
tions.

• Grid Label

Static textual display object that contains a user-specified string of text and is used
to label other display objects for clarity.

See “Grid Label” on page 10-4 for more information.

• Data Box

Dynamic display object that displays textual or numeric information related to a
trace event or state attribute associated with the current time line. The main use of a
Data Box is to display data that is variable in nature and does not lend itself to
graphical representation.

See “Data Box” on page 10-5 for more information.

• Column

Dynamic display object that does not display data itself but holds the scrollable
graphical display objects: State Graphs, Event Graphs, Data Graphs, and Rulers. Its
purpose is to group together related graphical display objects.

See “Column” on page 10-6 for more information.

• Event Graph

Dynamic, scrollable display object that graphically displays trace events as vertical
lines in a Column and indicates relative chronological positions of trace events since
the trace started.

See “Event Graph” on page 10-6 for more information.

• State Graph

Dynamic, scrollable display object that graphically displays states as bars and other
trace events as vertical lines in a Column and indicates relative chronological posi-
tions of trace events and states since the trace started. This display object is usually
used if you want to know when the application enters and exits a particular
user-defined state.

See “State Graph” on page 10-7 for more information.

• Data Graph

Dynamic, scrollable display object that graphically displays numeric values as verti-
cal lines or bars in a Column and indicates the relative chronological position of the
associated trace event. The height of the line or bar is proportional to the value and
is scaled according to the minimum and maximum graph values specified. This dis-
10-3

NightTrace RT User’s Guide
play object is commonly used to display relative values of arguments in the trace
event record.

See “Data Graph” on page 10-8 for more information.

• Ruler

Static, scrollable display object resembling a ruler that graphically displays the time.
Rulers are used in a Column with State Graphs, Event Graphs, and Data Graphs to
show what time a trace event occurred.

See “Ruler” on page 10-10 for more information.

Each display page can hold multiple instances of these display objects, usually with each
display object uniquely configured. All display objects on all display pages reflect the
same interval and current time line; display object type, size, configuration, and position
have no bearing.

Grid Label 10

A Grid Label is a rectangle that contains a string of text. This text usually is a title or
description of an adjacent display object on the grid and makes the display page easier to
interpret. Grid Labels can appear anywhere on the grid, but they cannot go inside a
Column. You can put several Grid Labels on a grid.

Figure 10-1. Grid Label Examples

Grid Labels are created by selecting the Grid Label menu item from the Graph menu
on the display page (see “Graph” on page 9-7). See “Creating Display Objects” on page
10-12 for more information.

If the text is too long to fit into the Grid Label, the lower right corner of the box is filled in.
If this occurs, you should resize the Grid Label. This is described in “Resizing Display
Objects” on page 10-14. A newly created label contains the word label.

Grid Labels are static display objects. That is, a Grid Label does not change its appear-
ance or contents depending on the trace event data.

In addition to specifying the text inside of the Grid Label, you also specify the color of the
text (and background), the font of the text, and where in the box the text will appear (for
example, top vs. bottom).
10-4

Display Objects
See “Grid Label” on page 10-16 for more information on configuring Grid Labels.

Data Box 10

A Data Box is a rectangle that textually displays data from the trace event file. Although
the data is usually related to the last trace event received, it can also be a cumulative total
or other manipulations of data in the trace event file. Data Boxes are useful when you
want to display data that does not lend itself to graphical representation, as shown in
Figure 10-2. This figure shows three Data Boxes: the top Data Box contains the interrupt
name, the middle contains the exception name and the bottom contains the syscall name.

Figure 10-2. Data Box Examples

Data Boxes are created by selecting the Data Box menu item from the Graph menu on
the display page (see “Graph” on page 9-7). See “Creating Display Objects” on page
10-12 for more information.

If a value is too large to fit into the Data Box (e.g., a long trace event name), the lower
right corner of the box is filled in. If this occurs, you should resize the Data Box (see
“Resizing Display Objects” on page 10-14).

By default, numeric data is displayed in decimal integer. (For information about overrid-
ing this default, see “Event Map Files” on page 6-11, “format()” on page 11-106, and
“get_format()” on page 11-104.) A newly created Data Box contains a 0.

Data Boxes can appear anywhere on the grid except within a Column. You can put several
Data Boxes on a grid.

Some examples of data that you can configure a Data Box to show are:

• Τhe name of the last trace event before the current time.

• Τhe NightTrace thread name of the last trace event before the current time.

• A particular argument logged with the last trace event before the current
time (See “arg()” on page 11-16.)

• Τhe total amount of time the application was in a particular state before the
current time (See “state_dur()” on page 11-71 and “sum()” on page 11-96.)

• Τhe number of times a particular trace event has occurred before the
current time (See “event_matches()” on page 11-35.)

• A string of characters generated by a format expression (See “format()” on
page 11-106.)
10-5

NightTrace RT User’s Guide
See “Data Box” on page 10-18 for more information on configuring Data Boxes.

Column 10

A Column holds State Graphs, Event Graphs, Data Graphs and Rulers. It provides a con-
venient way of associating these graphical display objects. Figure 10-3 shows a Column
with a Ruler added to it.

Figure 10-3. Column Example

Columns are created by selecting the Column menu item from the Graph menu on the
display page (see “Graph” on page 9-7). See “Creating Display Objects” on page 10-12
for more information.

When a Column is first created, it is an empty rectangle that does not display data of its
own.

Columns ensure that all graphical display objects within them have the same physical
starting point and ending point and the same time scale. Columns are not configured, so
the only variations between Columns are in their height and width.

Without a Column, you cannot put any State Graphs, Event Graphs, Data Graphs or Rulers
on your grid, so you must create a Column before you can create any of these display
objects.

You can place a Column anywhere on the grid. You can put more than one Column on a
grid. This allows you to group related graphical objects together. All of the Columns,
however, show the same interval and current time in View mode.

To hold a Ruler and any other graphical display object, Columns must be at least five grid
dots high. Wider Columns are recommended because they determine the resolution to
which trace events can be displayed.

Event Graph 10

An Event Graph represents trace events as a thin vertical line. Figure 10-4 shows an Event
Graph with a Ruler below it.
10-6

Display Objects
Figure 10-4. Event Graph Example

Event Graphs are created by selecting the Event Graph menu item from the Graph
menu on the display page (see “Graph” on page 9-7). See “Creating Display Objects” on
page 10-12 for more information.

Event Graphs must be placed in a Column (see “Column” on page 10-6).

Some examples of information that an Event Graph can be used to display are:

• The times your application starts executing a particular subroutine

• The sequence of execution of various modules in your application

• The timing of the birth and death of child processes

NOTE

In view mode (see “Edit Mode” on page 9-13), to find out more
information about a particular trace event, position the cursor on
the line and click once with mouse button 2. Information about
that trace event is displayed in the message display area.

See “Event Graph” on page 10-25 for more information on configuring Event Graphs.

State Graph 10

A State Graph represents an instance of a state as a solid horizontal bar that starts when
the state is active and ends when the state is inactive. A state is bounded by two
user-specified trace events, a start event and an end event. A State Graph and a Ruler are
shown in Figure 10-5.

Figure 10-5. State Graph Example
10-7

NightTrace RT User’s Guide
State Graphs are created by selecting the State Graph menu item from the Graph menu
on the display page (see “Graph” on page 9-7). See “Creating Display Objects” on page
10-12 for more information.

State Graphs must be placed in a Column (see “Column” on page 10-6).

An instance of a state is the period of time between the start event and end event, including
the start and end events themselves. Instances of the same state do not nest; thus, once a
state becomes active, events that might normally satisfy the conditions for the start event
are ignored until the end event is encountered.

A State Graph can display trace events in a manner identical to an Event Graph. This can
be useful for saving screen space or detecting when state start and state end trace events
occur out of order. For example, the trace event lines can show multiple state start trace
events occurring before a state end trace event.

Some examples of information that State Graphs can be used to display are:

• The times your application is executing a particular subroutine

• The differences in the execution speed of parallel threads

• The time spent in contention for resources

NOTE

In view mode (see “Edit Mode” on page 9-13), to find out more
information about a particular trace event, position the cursor on a
trace event line and click once with mouse button 2. Information
about that trace event is displayed in the message display area.
You can also click with mouse button 2 on the start and end of a
displayed state to obtain information about the state start and state
end trace events.

See “State Graph” on page 10-31 for more information on configuring State Graphs.

Data Graph 10

A Data Graph represents data as either vertical lines or bars of varying height. The height
of the line or bar is proportional to the value specified and is scaled according to the mini-
mum and maximum graph values allowed. This display object is usually used to display
values of arguments in the trace event record.

In Figure 10-6, the same set of data is used to draw two Data Graphs which differ only by
the fill style. The top Data Graph uses vertical lines of varying height to represent the
data. The bottom Data Graph uses solid bars of varying height; each bar extends to the
next event recognized by the Data Graph.
10-8

Display Objects
Figure 10-6. Data Graph Examples

Data Graphs are created by selecting the Data Graph menu item from the Graph menu
on the display page (see “Graph” on page 9-7). See “Creating Display Objects” on page
10-12 for more information.

Data Graphs must be placed in a Column (see “Column” on page 10-6).

Some examples of ways that a Data Graph can be used are:

• track the value of an expression over time

• identify when an application variable takes on an abnormally high or low
value

When choosing a size for your Data Graphs, make sure that they are high enough for you
to distinguish differences in data values.

TIP

The higher you make the Data Graph, the easier it is to differenti-
ate similar data points.

NOTE

In view mode (see “Edit Mode” on page 9-13), to find out about
the trace event that caused the data value expression to be evalu-
ated at a particular point, position the cursor on the line (or bar)
and click once with mouse button 2. Information about the trace
event is displayed in the message display area.

In view mode, to find out the value of a particular data item, posi-
tion the cursor on the line (or bar) and click once with mouse but-
ton 3. The value of that data item is displayed in the message dis-
play area.

See “Data Graph” on page 10-37 for more information on configuring Data Graphs.
10-9

NightTrace RT User’s Guide
Ruler 10

A Ruler graphically displays the time interval for the current data set. Ruler display
objects have major and minor hash marks to mark divisions of time since the first trace
event was logged.

Figure 10-7. Ruler Example

Rulers are created by selecting the Ruler menu item from the Graph menu on the dis-
play page (see “Graph” on page 9-7). See “Creating Display Objects” on page 10-12 for
more information.

Rulers must be placed in a Column (see “Column” on page 10-6) and should be at least
three grid dots high.

In addition to hash marks and numbers, other indicators that provide useful information
about the trace data being displayed are:

Figure 10-8 shows both a mark and a lost data indicator on a Ruler.

D a point in time where trace event had been discarded (see
“Discard Events...” on page 9-12)

L a point in time where NightTrace lost data (see “Prevent-
ing Trace Event Loss” on page 5-1)

P a point in time where the daemon logging trace data was
paused

R the point in time where the daemon logging trace data was
resumed

? a point in time where an erroneous timestamp was
detected on a kernel trace data point

a mark set by the user (see “Mark” on page 9-12)

a tag set by the user (see “Tag” on page 9-12)
10-10

Display Objects
Figure 10-8. Ruler Indicators

By default, the indicators appear in reverse-video with the indicator displayed as white
text over a colored background except for the mark which appears as a solid triangle. The
colors of the various indicators as well as the foreground color and background color of
the Ruler can be selected using the Configure Ruler dialog.

See “Ruler” on page 10-45 for more information on configuring Rulers.
10-11

NightTrace RT User’s Guide
Operations on Display Objects 10

This section describes some operations you can perform on display objects. The
operations discussed are:

• Creating display objects.

• Selecting display objects.

• Moving display objects.

• Resizing display objects.

• Configuring display objects.

NOTE

The display page must be in edit mode in order to perform any of
these operations on display objects. See “Edit Mode” on page
9-13 for more information.

Creating Display Objects 10

Creating display objects involves three steps: selecting the type of display object to be
drawn, selecting the place on the grid where the display object will go, and selecting the
size of the display object.

NOTE

The display page must be in edit mode in order to create display
objects. See “Edit Mode” on page 9-13 for more information.

State Graphs, Event Graphs, Data Graphs and Rulers must be created inside a Column (see
“Column” on page 10-6).

To create a display object and place it on the grid, do the following:

1. Select the type of display object you want to create from the Graph menu
(see “Graph” on page 9-7) of the display page. (The mouse pointer
changes to a crosshair).

2. Move the pointer until it is on the grid where you want to place a corner of
the display object. As mentioned previously, some display objects go only
inside of Columns. If the cursor is on the border of a Column or outside of
one, you will not be able to draw these display objects. Note that the left
and right sides of these display objects are determined by the Column, and
you only have to place the pointer somewhere on the intended top or
bottom edge of the display object.
10-12

Display Objects
3. Click and drag mouse button 1 until the display object is the size you want
it to be. While you are sizing a display object, its boundaries are shown as
dashed lines. Note that if you press the <Esc> key before releasing mouse
button 1, the operation aborts. The display object is still loaded, as signified
by the crosshair at the pointer location, so you can immediately try to
recreate the display object. Also note that display objects must not overlap
(except for graphical display objects, which must overlap a Column).

4. Release mouse button 1. The display object should appear on your grid
with solid line boundaries, unless there was an error (e.g., you placed a
Data Box on top of an existing Grid Label). Notice that the display object is
also selected (corners have handles). This is in case you want to move,
configure, or resize it at this time.

Selecting Display Objects 10

Often, you must select a display object before performing grid and edit operations. For
example, before you can resize a display object you must first select the display object.

NOTE

The display page must be in edit mode in order to configure dis-
play objects. See “Edit Mode” on page 9-13 for more informa-
tion.

To select a single display object, simply click on the display object with mouse button 1.
The display object now has handles at the corners, indicating that the display object is
selected.

When display objects are inside a Column, it is sometimes difficult to select the Column.
To select an unselected Column, hold down the <Control> key and click mouse button 1.
If you perform the same action in a selected Column, the Column is deselected.

You can select multiple display objects three different ways. The first way to select
multiple display objects is as follows:

1. Position the cursor outside the display objects you want to select.

2. Click mouse button 1 and drag the mouse until the rectangle that is formed
completely surrounds only the display objects you want to select. If a
display object is not completely surrounded by the rectangle, it will not be
selected.

3. Release mouse button 1. The display objects that were within the rectangle
will now have handles at each corner.

The second way to select multiple display objects is by using the <Shift> key. Holding
down the <Shift> key and clicking mouse button 1 while the cursor is in an unselected
display object selects that display object without deselecting any other display objects.
This allows you to select any set of display objects that you want. If you perform the same
action in a display object that is already selected, the display object is deselected.
10-13

NightTrace RT User’s Guide
The third way to select multiple display objects is by using the Select All menu item on
the Edit menu (see “Select All” on page 9-7).

Moving Display Objects 10

To move a display object to somewhere else on the grid, do the following:

1. Select the display object(s). Refer to “Selecting Display Objects” on page
10-13.

2. Using the mouse button 2, click anywhere on or within the selected display
object(s) and drag to the desired location.

3. Release the middle button.

NOTE

The display page must be in edit mode in order to move display
objects. See “Edit Mode” on page 9-13 for more information.

When display objects are inside a Column, it is sometimes difficult to move the Column.
To move a selected Column, hold down the <Control> key and click mouse button 2.

Display objects must not overlap, although certain display objects must be placed inside a
Column. If you try to move a display object on top of another display object, NightTrace
displays an error message in the message display area and aborts the move.

Resizing Display Objects 10

To resize a display object on the grid, do the following:

1. Select the display object. See “Selecting Display Objects” on page 10-13
for more information.

2. Using mouse button 3, click on a handle and drag until the desired size is
reached.

3. Release the right button.

NOTE

The display page must be in edit mode in order to resize display
objects. See “Edit Mode” on page 9-13 for more information.

When display objects are inside a Column, it is sometimes difficult to resize the Column.
To resize a selected Column, hold down the <Control> key and click mouse button 3.
10-14

Display Objects
Note that a Column cannot be vertically resized smaller than the minimum space required
to hold all the State Graphs, Event Graphs, Data Graphs and Rulers that it contains.

Display objects must not overlap, although certain display objects must be placed inside a
Column. If you try to resize a display object on top of another display object, NightTrace
displays an error message in the message display area and aborts the resize.

Configuring Display Objects 10

Double-clicking on a particular display object will bring up the configuration dialog for
that display object. In addition, you may select the Configure... menu item from the
Edit menu of any display page to bring up the configuration dialog for the selected dis-
play object (see “Configure...” on page 9-8).

NOTE

The display page must be in edit mode in order to configure dis-
play objects. See “Edit Mode” on page 9-13 for more informa-
tion.

The following sections discuss the configuration dialogs for each of the following display
objects:

• Grid Label

• Data Box

• Event Graph

• State Graph

• Data Graph

• Ruler
10-15

NightTrace RT User’s Guide
Grid Label 10

The Configure Grid Label dialog is shown in Figure 10-9.

See “Grid Label” on page 10-4 for more information.

Figure 10-9. Configure Grid Label dialog

Grid Label Text

The text that is to be displayed in the Grid Label.

Grid Label Font

The font in which the Grid Label Text is to be displayed.

Browse

Presents the Choose Font dialog allowing the user to specify a font by
Family, Weight, Slant, and Size.

Horizontal Alignment

Determines the justification of the text in the Grid Label.

Vertical Alignment

Determines the vertical placement of the text in the Grid Label.
10-16

Display Objects
Text Color

Presents the Choose Color dialog allowing the user to specify the color of the
text displayed in the Grid Label. The Text Color should contrast well with the
Background Color of the Grid Label.

Background Color

Presents the Choose Color dialog allowing the user to specify the color of the
background of the Grid Label. The Background Color should contrast well with
the Text Color.
10-17

NightTrace RT User’s Guide
Data Box 10

The Configure Data Box dialog is shown in Figure 10-10.

See “Data Box” on page 10-5 for more information.

Figure 10-10. Configure Data Box dialog

Key/Value

The Key/Value option list provides a starting point for data box definition. Select-
ing items from the option list populates the individual criteria fields below with the
values and expressions required to specify the profile you have selected.

The option list provides the following items:

Condition

This option populates the criteria fields to create a data box which will match
any event, unconditionally. It is useful when you wish to manually enter crite-
ria starting from a clean template.
10-18

Display Objects
System Call All Events
System Call Enter Events
System Call Exit Events

These options populate the criteria fields such that the data box detects the
existence of a specific system call, as indicated by the specific option selected.
After selecting one of these options, a system call list will launch allowing
you to select an individual system call.

Selecting System Call All Events will match events representing the
entry, suspension, resumption, and exit of a system call.

Selecting System Call Enter Events or System Call Exit Events will
match events representing entry and resumption of a system call, or suspen-
sion and exit, respectively.

When a specific system call is selected, the name of the system call will
appear in a read-only text field beneath the Key/Value option list. The spe-
cific system call associated with the data box can be changed by pressing the
Values... button and selecting a different value from the list.

These options are desensitized if kernel trace data is not loaded.

NOTE

You can select multiple system calls from the pop-up dialog.

Exception All Events
Exception Enter Events
Exception Exit Events

These options populate the criteria fields such that the data box detects the
existence of a specific machine exception, as indicated by the specific option
selected. After selecting one of these options, an exception list will launch
allowing you to select an individual exception.

Selecting Exception All Events will match events representing the entry,
suspension, resumption, and exit of an exception.

Selecting Exception Enter Events or Exception Exit Events will
match events representing entry and resumption of an exception, or suspen-
sion and exit, respectively.

When a specific exception is selected, the name of the exception will appear
in a read-only text field beneath the Key/Value option list. The specific
exception associated with the data box can be changed by pressing the Val-
ues... button and selecting a different value from the list.

These options are desensitized if kernel trace data is not loaded.
10-19

NightTrace RT User’s Guide
NOTE

You can select multiple exceptions from the pop-up dialog.

Interrupt All Events
Interrupt Enter Events
Interrupt Exit Events

These options populate the criteria fields such that the data box detects the
existence of a specific machine interrupt, as indicated by the specific option
selected. After selecting one of these options, an interrupt list will launch
allowing you to select an individual interrupt.

Selecting Interrupt All Events will match events representing the entry,
suspension, resumption, and exit of an interrupt.

Selecting Interrupt Enter Events or Interrupt Exit Events will match
events representing entry and resumption of an interrupt, or suspension and
exit, respectively.

When a specific system call is selected, the name of the interrupt will appear
in a read-only text field beneath the Key/Value option list. The specific
interrupt associated with the data box can be changed by pressing the Val-
ues... button and selecting a different value from the list.

These options are desensitized if kernel trace data is not loaded.

NOTE

You can select multiple interrupts from the pop-up dialog.

Tagged Events

This option populates the criteria fields such that the data box detects the
event associated with the tag that you select from the list that is launched
when choosing this option.

When a specific tag is selected, the name of the tag will appear in a read-only
text field beneath the Key/Value option list. The specific tag associated with
the data box can be changed by pressing the Values... button and selecting a
different value from the list.

If no tagged events exist, this menu option is desensitized.

You can tag events with labels and annotations using the Tag icon on the tool
bar, the Tags... option from the Edit dialog, as well as other actions in the
NightTrace main window and in Display pages (see page 7-47 for informa-
tion).
10-20

Display Objects
NOTE

You can select multiple tags from the pop-up dialog.

Choose Profile...

You can select from previously-defined profiles using the Choose Profile... but-
ton.

Selecting an entry from the list displayed by this button populates the data box dia-
log with the criteria associated with that profile.

Alternatively, when checking the Import Reference to Profile checkbox in the
Choose Profile... list, the dialog will be populated with an expression that refer-
ences the selected profile. This technique allows you to add additional criteria
within the data box while preserving the named association. Thus subsequent
changes to the selected profile will be reflected in the data box.

After choosing a Key/Value pair or previously defined profile using the Choose Pro-
file... button, you can further customize the condition or state by using the individual text
fields and selection lists in the dialog.

Any customized changes which are subsequently made appear in the criteria text fields
with a salmon-colored background. Pressing the Reset button restores the default crite-
ria that were populated when you selected the profile.

Other Profiles

This area allows you to configure the data box with a condition with additional con-
straints associated with a previously-defined condition.

Pressing Logical And... or Logical Or... launches a list of known profiles and
imports the profile you select by reference into the dialog, combining it with the
current configuration via a boolean AND or OR operation, respectively.

Events

The Events criterion allows you restrict the condition to events listed in the text
fields. Values in the text fields are required to be a comma-separated list of numeric
event numbers or ranges or event names. The Browse... buttons to the right of the
text fields allows you to select from a list of known event names. The values ALL,
ALLADA, ALLKERNEL, and ALLUSER are special entries referring to classes
of events, as indicated by their name.

Exclude Events

The Exclude Events criterion allows you restrict the condition to events that are
not listed in the text field. It is only shown for condition profiles.

Values in the text field are required to be a comma-separated list of numeric event
numbers or ranges or event names. The Browse... button to the right of the text
field allows you to select from a list of known event names. The value NONE is a
10-21

NightTrace RT User’s Guide
special entry referring to null set of events, which means that no events are
excluded.

Condition

The Condition criterion allows you restrict the profile using NightTrace’s expres-
sion language. Values in the text fields are required to be a boolean NightTrace
expressions whose syntax is roughly that of the C language, with built-in functions
for accessing attributes of events. See “Using Expressions” on page 11-1 for more
information on expression syntax and semantics.

Processes

The Processes criterion allows you restrict the condition to events generated by
processes that are specified in the text field.

Values in the text field are required to be a comma-separated list of process names or
PIDs (see getpid(2) and gettid(2)). The Browse... button to the right of
the text field allows you to select from a list of known processes.

NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the process identifier
is the thread’s TID.

If multiple processes have the same name (perhaps two unrelated programs both
called a.out) selecting that name from the list or placing that text in the text field
will match both processes. Similarly, for multi-threaded processes, the specified
process name will match all threads within the process.

Placing a process name in the Processes list is equivalent to adding a condition
restriction using the following NightTrace expression:

process_name == “a.out”

Threads

The Threads criterion allows you restrict the condition to events generated by
threads that are specified in the text field.

Values in the text field are required to be a comma-separated list of thread IDs (see
gettid(2)). The Browse... button to the right of the text field allows you to
select from a list of known threads by name. This list is only available when user
trace data from registered threads is loaded. See “Threads and Logging” on page
2-26 for more information.

If multiple threads with the same name exist, specifying the thread name will match
all such threads.
10-22

Display Objects
Placing a thread name in the Threads list is equivalent to adding to adding a condi-
tion restriction using the following NightTrace expression:

thread_name == “mythread”

Nodes

The Nodes criterion allows you restrict the condition to events generated on the
systems that are specified in the text field.

Values in the text field are required to be a comma-separated list of system names
(see hostname(1)). The Browse... button to the right of the text field allows
you to select from a list of known hosts present in the loaded trace data sets by
name.

Use of the Nodes criterion is only useful when capturing and analyzing data from
multiple systems using the Real-time Clock and Interrupt Module (RCIM) as a syn-
chronized timing source. See the Real-Time Clock and Interrupt Module User’s
Guide (0891082) for more information.

Placing a node name in the Nodes list is equivalent to adding to adding a condition
restriction using the following NightTrace expression:

node_name == “a.out”

CPUs

The CPUs selector area allows you to place CPU restrictions on the profile. Use
the checkboxes to select the CPUs of interest.

Displayed Text

The text that is to be displayed in the Data Box when all criteria specified by this
configuration dialog is met.

This is usually specified using the format() command (see “format()” on page
11-106). For example:

format(“%s event at offset %d”, get_string(event, id),offset)

However, you may also enter a static string by placing double quotes around the
desired text.

Edit

Presents the Edit Text dialog in which to enter the output text. This dialog is
useful when the desired text or format() string becomes too long to be eas-
ily edited directly in the Displayed Text field.

Text Font

The font in which the DIsplayed Text is to be displayed.
10-23

NightTrace RT User’s Guide
Browse

Presents the Choose Font dialog allowing the user to specify a font by
Family, Weight, Slant, and Size.

Text Color

Presents the Choose Color dialog allowing the user to specify the color of the
text displayed in the Data Box. The Text Color should contrast well with the
Background Color of the Data Box.

Background Color

Presents the Choose Color dialog allowing the user to specify the color of the
background of the Data Box. The Background Color should contrast well with
the Text Color.

Horizontal Alignment

Determines the justification of the text in the Data Box.

Vertical Alignment

Determines the vertical placement of the text in the Data Box.
10-24

Display Objects
Event Graph 10

The Configure Event Graph dialog is shown in Figure 10-11.

See “Event Graph” on page 10-6 for more information.

Figure 10-11. Configure Event Graph dialog

Key/Value

The Key/Value option list provides a starting point for event graph definition.
Selecting items from the option list populates the individual criteria fields below
with the values and expressions required to specify the profile you have selected.

The option list provides the following items:

Condition

This option populates the criteria fields to create a event graph which will
match any event, unconditionally. It is useful when you wish to manually
enter criteria starting from a clean template.
10-25

NightTrace RT User’s Guide
System Call All Events
System Call Enter Events
System Call Exit Events

These options populate the criteria fields such that the event graph detects the
existence of a specific system call, as indicated by the specific option selected.
After selecting one of these options, a system call list will launch allowing
you to select an individual system call.

Selecting System Call All Events will match events representing the
entry, suspension, resumption, and exit of a system call.

Selecting System Call Enter Events or System Call Exit Events will
match events representing entry and resumption of a system call, or suspen-
sion and exit, respectively.

When a specific system call is selected, the name of the system call will
appear in a read-only text field beneath the Key/Value option list. The spe-
cific system call associated with the event graph can be changed by pressing
the Values... button and selecting a different value from the list.

These options are desensitized if kernel trace data is not loaded.

NOTE

You can select multiple system calls from the pop-up dialog.

Exception All Events
Exception Enter Events
Exception Exit Events

These options populate the criteria fields such that the event graph detects the
existence of a specific machine exception, as indicated by the specific option
selected. After selecting one of these options, an exception list will launch
allowing you to select an individual exception.

Selecting Exception All Events will match events representing the entry,
suspension, resumption, and exit of an exception.

Selecting Exception Enter Events or Exception Exit Events will
match events representing entry and resumption of an exception, or suspen-
sion and exit, respectively.

When a specific interrupt is selected, the name of the exception will appear in
a read-only text field beneath the Key/Value option list. The specific excep-
tion associated with the event graph can be changed by pressing the Val-
ues... button and selecting a different value from the list.

These options are desensitized if kernel trace data is not loaded.

NOTE

You can select multiple exceptions from the pop-up dialog.
10-26

Display Objects
Interrupt All Events
Interrupt Enter Events
Interrupt Exit Events

These options populate the criteria fields such that the event graph detects the
existence of a specific machine interrupt, as indicated by the specific option
selected. After selecting one of these options, an interrupt list will launch
allowing you to select an individual interrupt.

Selecting Interrupt All Events will match events representing the entry,
suspension, resumption, and exit of an interrupt.

Selecting Interrupt Enter Events or Interrupt Exit Events will match
events representing entry and resumption of an interrupt, or suspension and
exit, respectively.

When a specific system call is selected, the name of the interrupt will appear
in a read-only text field beneath the Key/Value option list. The specific
interrupt associated with the event graph can be changed by pressing the Val-
ues... button and selecting a different value from the list.

These options are desensitized if kernel trace data is not loaded.

NOTE

You can select multiple interrupts from the pop-up dialog.

Tagged Events

This option populates the criteria fields such that the event graph detects the
event associated with the tag that you select from the list that is launched
when choosing this option.

When a specific tag is selected, the name of the tag will appear in a read-only
text field beneath the Key/Value option list. The specific tag associated with
the event graph can be changed by pressing the Values... button and select-
ing a different value from the list.

If no tagged events exist, this menu option is desensitized.

You can tag events with labels and annotations using the Tag icon on the tool
bar, the Tags... option from the Edit dialog, as well as other actions in the
NightTrace main window and in Display pages (see page 7-47 for informa-
tion).

NOTE

You can select multiple tags from the pop-up dialog.
10-27

NightTrace RT User’s Guide
Choose Profile...

You can select from previously-defined profiles using the Choose Profile... but-
ton.

Selecting an entry from the list displayed by this button populates the event graph
dialog with the criteria associated with that profile.

Alternatively, when checking the Import Reference to Profile checkbox in the
Choose Profile... list, the dialog will be populated with an expression that refer-
ences the selected profile. This technique allows you to add additional criteria
within the event graph while preserving the named association. Thus subsequent
changes to the selected profile will be reflected in the event graph.

After choosing a Key/Value pair or previously defined profile using the Choose Pro-
file... button, you can further customize the condition or state by using the individual text
fields and selection lists in the dialog.

Any customized changes which are subsequently made appear in the criteria text fields
with a salmon-colored background. Pressing the Reset button restores the default crite-
ria that were populated when you selected the profile.

Other Profiles

This area allows you to configure the event graph with a condition with additional
constraints associated with a previously-defined condition.

Pressing Logical And... or Logical Or... launches a list of known profiles and
imports the profile you select by reference into the dialog, combining it with the
current configuration via a boolean AND or OR operation, respectively.

Events

The Events criterion allows you restrict the condition to events listed in the text
fields. Values in the text fields are required to be a comma-separated list of numeric
event numbers or ranges or event names. The Browse... buttons to the right of the
text fields allows you to select from a list of known event names. The values ALL,
ALLADA, ALLKERNEL, and ALLUSER are special entries referring to classes
of events, as indicated by their name.

Exclude Events

The Exclude Events criterion allows you restrict the condition to events that are
not listed in the text field. It is only shown for condition profiles.

Values in the text field are required to be a comma-separated list of numeric event
numbers or ranges or event names. The Browse... button to the right of the text
field allows you to select from a list of known event names. The value NONE is a
special entry referring to null set of events, which means that no events are
excluded.
10-28

Display Objects
Condition

The Condition criterion allows you restrict the profile using NightTrace’s expres-
sion language. Values in the text fields are required to be a boolean NightTrace
expressions whose syntax is roughly that of the C language, with built-in functions
for accessing attributes of events. See “Using Expressions” on page 11-1 for more
information on expression syntax and semantics.

Processes

The Processes criterion allows you restrict the condition to events generated by
processes that are specified in the text field.

Values in the text field are required to be a comma-separated list of process names or
PIDs (see getpid(2) and gettid(2)). The Browse... button to the right of
the text field allows you to select from a list of known processes.

NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the process identifier
is the thread’s TID.

If multiple processes have the same name (perhaps two unrelated programs both
called a.out) selecting that name from the list or placing that text in the text field
will match both processes. Similarly, for multi-threaded processes, the specified
process name will match all threads within the process.

Placing a process name in the Processes list is equivalent to adding a condition
restriction using the following NightTrace expression:

process_name == “a.out”

Threads

The Threads criterion allows you restrict the condition to events generated by
threads that are specified in the text field.

Values in the text field are required to be a comma-separated list of thread IDs (see
gettid(2)). The Browse... button to the right of the text field allows you to
select from a list of known threads by name. This list is only available when user
trace data from registered threads is loaded. See “Threads and Logging” on page
2-26 for more information.

If multiple threads with the same name exist, specifying the thread name will match
all such threads.

Placing a thread name in the Threads list is equivalent to adding to adding a condi-
tion restriction using the following NightTrace expression:
10-29

NightTrace RT User’s Guide
thread_name == “mythread”

Nodes

The Nodes criterion allows you restrict the condition to events generated on the
systems that are specified in the text field.

Values in the text field are required to be a comma-separated list of system names
(see hostname(1)). The Browse... button to the right of the text field allows
you to select from a list of known hosts present in the loaded trace data sets by
name.

Use of the Nodes criterion is only useful when capturing and analyzing data from
multiple systems using the Real-time Clock and Interrupt Module (RCIM) as a syn-
chronized timing source. See the Real-Time Clock and Interrupt Module User’s
Guide (0891082) for more information.

Placing a node name in the Nodes list is equivalent to adding to adding a condition
restriction using the following NightTrace expression:

node_name == “a.out”

CPUs

The CPUs selector area allows you to place CPU restrictions on the profile. Use
the checkboxes to select the CPUs of interest.

Event Mark Color

Presents the Choose Color dialog allowing the user to specify the color of the
vertical lines representing the trace events on the event graph. The Event Mark
Color should contrast well with the Background Color of the Event Graph.

Background Color

Presents the Choose Color dialog allowing the user to specify the color of the
background of the event graph. The Background Color should contrast well with
the Event Mark Color.
10-30

Display Objects
State Graph 10

The Configure State Graph dialog is shown in Figure 10-12.

See “State Graph” on page 10-7 for more information.

Figure 10-12. Configure State Graph dialog

A state is bounded by two user-specified trace events, a start event and an end event. An
instance of a state is the period of time between the start event and end event, including the
start and end events themselves. Instances of the same state do not nest; thus, once a state
becomes active, events that might normally satisfy the conditions for the start event are
ignored until the end event is encountered.

State Graphs indicate when a state is active by drawing a rectangle in the Active State
Color that spans the time when the start state and end state criteria are met. In addition to
drawing this state rectangle, State Graphs can behave exactly like Event Graphs by using
the Events Shown. Trace event lines are superimposed on the state rectangle, which is
useful for diagnosing problems where the criteria for starting the state are met multiple
times before the criteria for ending the state are met.
10-31

NightTrace RT User’s Guide
Key/Value

The Key/Value option list provides a starting point for state graph definition.
Selecting items from the option list populates the individual criteria fields below
with the values and expressions required to specify the profile you have selected.

The option list provides the following items:

State

This option populates the criteria fields to create a state which starts on any
event and ends on any event. It is useful when you wish to manually enter
state criteria starting from a clean template.

System Call State

This option populate the criteria fields such that the state graph detects the
existence of a specific system call, as indicated by the specific option selected.
After selecting one of these options, a system call list will launch allowing
you to select an individual system call.

This option defines a state which begins when a system calls is entered or
resumed, and terminates when the system call is suspended or exits.

When a specific system call is selected, the name of the system call will
appear in a read-only text field beneath the Key/Value option list. The spe-
cific system call associated with the state graph can be changed by pressing
the Values... button and selecting a different value from the list.

This option is not present if kernel trace data is not loaded.

NOTE

You can select multiple system calls from the pop-up dialog.

Exception State

These options populate the criteria fields such that the state graph detects the
existence of a specific machine exception, as indicated by the specific option
selected. After selecting one of these options, an exception list will launch
allowing you to select an individual exception.

This option defines a state which begins when a exception is entered or
resumed, and terminates when the exception is suspended or exits.

When a specific exception is selected, the name of the exception will appear
in a read-only text field beneath the Key/Value option list. The specific
exception associated with the state graph can be changed by pressing the Val-
ues... button and selecting a different value from the list.

This option is not present if kernel trace data is not loaded.
10-32

Display Objects
NOTE

You can select multiple exceptions from the pop-up dialog.

Interrupt State

These options populate the criteria fields such that the state graph detects the
existence of a specific machine interrupt, as indicated by the specific option
selected. After selecting one of these options, an interrupt list will launch
allowing you to select an individual interrupt.

This option defines a state which begins when a interrupt is entered and termi-
nates when the interrupt exits.

When a specific system call is selected, the name of the interrupt will appear
in a read-only text field beneath the Key/Value option list. The specific
interrupt associated with the state graph can be changed by pressing the Val-
ues... button and selecting a different value from the list.

This option is not present if kernel trace data is not loaded.

NOTE

You can select multiple interrupts from the pop-up dialog.

Choose Profile...

You can select from previously-defined profiles using the Choose Profile... but-
ton.

Selecting an entry from the list displayed by this button populates the state graph
dialog with the criteria associated with that profile.

Alternatively, when checking the Import Reference to Profile checkbox in the
Choose Profile... list, the dialog will be populated with an expression that refer-
ences the selected profile. This technique allows you to add additional criteria
within the state graph while preserving the named association. Thus subsequent
changes to the selected profile will be reflected in the state graph.

After choosing a Key/Value pair or previously defined profile using the Choose Pro-
file... button, you can further customize the state graph by using the individual text fields
and selection lists in the dialog.

Any customized changes which are subsequently made appear in the criteria text fields
with a salmon-colored background. Pressing the Reset button restores the default crite-
ria that were populated when you selected the profile.

Other Profiles

This area allows you to configure the state graph with a condition with additional
constraints associated with a previously-defined condition.
10-33

NightTrace RT User’s Guide
Pressing Logical And... or Logical Or... launches a list of known profiles and
imports the profile you select by reference into the dialog, combining it with the
current configuration via a boolean AND or OR operation, respectively.

Start Events
End Events

The Start Events and End Events criteria allows you restrict the condition to
events listed in the text fields. Values in the text fields are required to be a
comma-separated list of numeric event numbers or ranges or event names.

Start Events and End Events refers to events which are candidates for the
beginning or end of a state, respectively. Events refers to all events.

The Browse... buttons to the right of the text fields allows you to select from a list
of known event names. The values ALL , ALLADA , ALLKERNEL , and
ALLUSER are special entries referring to classes of events, as indicated by their
name.

Start Condition
End Condition

The Start Condition, and End Condition criteria allows you restrict the profile
using NightTrace’s expression language. Values in the text fields are required to be
a boolean NightTrace expressions whose syntax is roughly that of the C language,
with built-in functions for accessing attributes of events. See “Using Expressions”
on page 11-1 for more information on expression syntax and semantics.

Start Condition and End Condition refers to the criteria which must be met for
the beginning or end of a state, respectively.

Processes

The Processes criterion allows you restrict the condition to events generated by
processes that are specified in the text field.

Values in the text field are required to be a comma-separated list of process names or
PIDs (see getpid(2) and gettid(2)). The Browse... button to the right of
the text field allows you to select from a list of known processes.

NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the process identifier
is the thread’s TID.

If multiple processes have the same name (perhaps two unrelated programs both
called a.out) selecting that name from the list or placing that text in the text field
10-34

Display Objects
will match both processes. Similarly, for multi-threaded processes, the specified
process name will match all threads within the process.

Placing a process name in the Processes list is equivalent to adding a condition
restriction using the following NightTrace expression:

process_name == “a.out”

Threads

The Threads criterion allows you restrict the condition to events generated by
threads that are specified in the text field.

Values in the text field are required to be a comma-separated list of thread IDs (see
gettid(2)). The Browse... button to the right of the text field allows you to
select from a list of known threads by name. This list is only available when user
trace data from registered threads is loaded. See “Threads and Logging” on page
2-26 for more information.

If multiple threads with the same name exist, specifying the thread name will match
all such threads.

Placing a thread name in the Threads list is equivalent to adding to adding a condi-
tion restriction using the following NightTrace expression:

thread_name == “mythread”

Nodes

The Nodes criterion allows you restrict the condition to events generated on the
systems that are specified in the text field.

Values in the text field are required to be a comma-separated list of system names
(see hostname(1)). The Browse... button to the right of the text field allows
you to select from a list of known hosts present in the loaded trace data sets by
name.

Use of the Nodes criterion is only useful when capturing and analyzing data from
multiple systems using the Real-time Clock and Interrupt Module (RCIM) as a syn-
chronized timing source. See the Real-Time Clock and Interrupt Module User’s
Guide (0891082) for more information.

Placing a node name in the Nodes list is equivalent to adding to adding a condition
restriction using the following NightTrace expression:

node_name == “a.out”

CPUs

The CPUs selector area allows you to place CPU restrictions on the profile. Use
the checkboxes to select the CPUs of interest.
10-35

NightTrace RT User’s Guide
Event Condition

This field specifies the condition which must evaluate to TRUE in order for an
event, as defined by Events Shown, to appear. This condition does not in any
way affect the Start Condition or End Condition of the state.

Events Shown

This field specifies which events will be shown in addition to the state as defined by
the dialog.

Values in the text fields are required to be a comma-separated list of numeric event
numbers or ranges or event names. You can use the Browse... button to the right
of the text field to select from a list of known event names.

Active State Color

Presents the Choose Color dialog to allow the user to specify the color of the
solid horizontal bar that represents the instance of a state in the state graph. The
Active State Color should contrast well with the Background Color of the
State Graph.

Events Shown Color

Presents the Choose Color dialog to allow the user to specify the color of the ver-
tical lines that represent the events specified by Events Shown. The Events
Shown Color should contrast well with the Background Color of the state
graph.

Background Color

Presents the Choose Color dialog allowing the user to specify the color of the
background of the state graph. The Background Color should contrast well with
the Active State Color and the Events Shown Color.
10-36

Display Objects
Data Graph 10

The Configure Data Graph dialog is shown in Figure 10-13.

See “Data Graph” on page 10-8 for more information.

Figure 10-13. Configure Data Graph dialog

Key/Value

The Key/Value option list provides a starting point for data graph definition.
Selecting items from the option list populates the individual criteria fields below
with the values and expressions required to specify the profile you have selected.

The option list provides the following items:

Condition

This option populates the criteria fields to create a data graph which will
match any event, unconditionally. It is useful when you wish to manually
enter criteria starting from a clean template.
10-37

NightTrace RT User’s Guide
System Call All Events
System Call Enter Events
System Call Exit Events

These options populate the criteria fields such that the data graph detects the
existence of a specific system call, as indicated by the specific option selected.
After selecting one of these options, a system call list will launch allowing
you to select an individual system call.

Selecting System Call All Events will match events representing the
entry, suspension, resumption, and exit of a system call.

Selecting System Call Enter Events or System Call Exit Events will
match events representing entry and resumption of a system call, or suspen-
sion and exit, respectively.

When a specific system call is selected, the name of the system call will
appear in a read-only text field beneath the Key/Value option list. The spe-
cific system call associated with the data graph can be changed by pressing the
Values... button and selecting a different value from the list.

These options are desensitized if kernel trace data is not loaded.

NOTE

You can select multiple system calls from the pop-up dialog.

Exception All Events
Exception Enter Events
Exception Exit Events

These options populate the criteria fields such that the data graph detects the
existence of a specific machine exception, as indicated by the specific option
selected. After selecting one of these options, an exception list will launch
allowing you to select an individual exception.

Selecting Exception All Events will match events representing the entry,
suspension, resumption, and exit of an exception.

Selecting Exception Enter Events or Exception Exit Events will
match events representing entry and resumption of an exception, or suspen-
sion and exit, respectively.

When a specific interrupt is selected, the name of the exception will appear in
a read-only text field beneath the Key/Value option list. The specific excep-
tion associated with the data graph can be changed by pressing the Values...
button and selecting a different value from the list.

These options are desensitized if kernel trace data is not loaded.

NOTE

You can select multiple exceptions from the pop-up dialog.
10-38

Display Objects
Interrupt All Events
Interrupt Enter Events
Interrupt Exit Events

These options populate the criteria fields such that the data graph detects the
existence of a specific machine interrupt, as indicated by the specific option
selected. After selecting one of these options, an interrupt list will launch
allowing you to select an individual interrupt.

Selecting Interrupt All Events will match events representing the entry,
suspension, resumption, and exit of an interrupt.

Selecting Interrupt Enter Events or Interrupt Exit Events will match
events representing entry and resumption of an interrupt, or suspension and
exit, respectively.

When a specific system call is selected, the name of the interrupt will appear
in a read-only text field beneath the Key/Value option list. The specific
interrupt associated with the data graph can be changed by pressing the Val-
ues... button and selecting a different value from the list.

These options are desensitized if kernel trace data is not loaded.

NOTE

You can select multiple interrupts from the pop-up dialog.

Tagged Events

This option populates the criteria fields such that the data graph detects the
event associated with the tag that you select from the list that is launched
when choosing this option.

When a specific tag is selected, the name of the tag will appear in a read-only
text field beneath the Key/Value option list. The specific tag associated with
the data graph can be changed by pressing the Values... button and selecting
a different value from the list.

If no tagged events exist, this menu option is desensitized.

You can tag events with labels and annotations using the Tag icon on the tool
bar, the Tags... option from the Edit dialog, as well as other actions in the
NightTrace main window and in Display pages (see page 7-47 for informa-
tion).

NOTE

You can select multiple tags from the pop-up dialog.
10-39

NightTrace RT User’s Guide
Choose Profile...

You can select from previously-defined profiles using the Choose Profile... but-
ton.

Selecting an entry from the list displayed by this button populates the data graph
dialog with the criteria associated with that profile.

Alternatively, when checking the Import Reference to Profile checkbox in the
Choose Profile... list, the dialog will be populated with an expression that refer-
ences the selected profile. This technique allows you to add additional criteria
within the data graph while preserving the named association. Thus subsequent
changes to the selected profile will be reflected in the data graph.

After choosing a Key/Value pair or previously defined profile using the Choose Pro-
file... button, you can further customize the condition or state by using the individual text
fields and selection lists in the dialog.

Any customized changes which are subsequently made appear in the criteria text fields
with a salmon-colored background. Pressing the Reset button restores the default crite-
ria that were populated when you selected the profile.

Other Profiles

This area allows you to configure the data graph with a condition with additional
constraints associated with a previously-defined condition.

Pressing Logical And... or Logical Or... launches a list of known profiles and
imports the profile you select by reference into the dialog, combining it with the
current configuration via a boolean AND or OR operation, respectively.

Events

The Events criterion allows you restrict the condition to events listed in the text
fields. Values in the text fields are required to be a comma-separated list of numeric
event numbers or ranges or event names. The Browse... buttons to the right of the
text fields allows you to select from a list of known event names. The values ALL,
ALLADA, ALLKERNEL, and ALLUSER are special entries referring to classes
of events, as indicated by their name.

Exclude Events

The Exclude Events criterion allows you restrict the condition to events that are
not listed in the text field. It is only shown for condition profiles.

Values in the text field are required to be a comma-separated list of numeric event
numbers or ranges or event names. The Browse... button to the right of the text
field allows you to select from a list of known event names. The value NONE is a
special entry referring to null set of events, which means that no events are
excluded.
10-40

Display Objects
Condition

The Condition criterion allows you restrict the profile using NightTrace’s expres-
sion language. Values in the text fields are required to be a boolean NightTrace
expressions whose syntax is roughly that of the C language, with built-in functions
for accessing attributes of events. See “Using Expressions” on page 11-1 for more
information on expression syntax and semantics.

Processes

The Processes criterion allows you restrict the condition to events generated by
processes that are specified in the text field.

Values in the text field are required to be a comma-separated list of process names or
PIDs (see getpid(2) and gettid(2)). The Browse... button to the right of
the text field allows you to select from a list of known processes.

NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the process identifier
is the thread’s TID.

If multiple processes have the same name (perhaps two unrelated programs both
called a.out) selecting that name from the list or placing that text in the text field
will match both processes. Similarly, for multi-threaded processes, the specified
process name will match all threads within the process.

Placing a process name in the Processes list is equivalent to adding a condition
restriction using the following NightTrace expression:

process_name == “a.out”

Threads

The Threads criterion allows you restrict the condition to events generated by
threads that are specified in the text field.

Values in the text field are required to be a comma-separated list of thread IDs (see
gettid(2)). The Browse... button to the right of the text field allows you to
select from a list of known threads by name. This list is only available when user
trace data from registered threads is loaded. See “Threads and Logging” on page
2-26 for more information.

If multiple threads with the same name exist, specifying the thread name will match
all such threads.

Placing a thread name in the Threads list is equivalent to adding to adding a condi-
tion restriction using the following NightTrace expression:
10-41

NightTrace RT User’s Guide
thread_name == “mythread”

Nodes

The Nodes criterion allows you restrict the condition to events generated on the
systems that are specified in the text field.

Values in the text field are required to be a comma-separated list of system names
(see hostname(1)). The Browse... button to the right of the text field allows
you to select from a list of known hosts present in the loaded trace data sets by
name.

Use of the Nodes criterion is only useful when capturing and analyzing data from
multiple systems using the Real-time Clock and Interrupt Module (RCIM) as a syn-
chronized timing source. See the Real-Time Clock and Interrupt Module User’s
Guide (0891082) for more information.

Placing a node name in the Nodes list is equivalent to adding to adding a condition
restriction using the following NightTrace expression:

node_name == “a.out”

CPUs

The CPUs selector area allows you to place CPU restrictions on the profile. Use
the checkboxes to select the CPUs of interest.

Graph Value

The value to be graphed on the Data Graph.

The Graph Value can be any value between Min Graph Value and Max
Graph Value and is usually related to the event. For instance, to graph the value
of the second argument in the trace event record meeting all criteria specified by this
configuration dialog, arg2 should be entered for Graph Value.

Max Graph Value

The Max Graph Value parameter determines what data value corresponds to the
top of the Data Graph.

The possible values are integers or CALC. If an integer is specified as the maximum,
any data that is equal to or greater than that value results in a line or bar that goes to
the top of the Data Graph. If CALC is specified, the maximum value will be the
greatest value found in the trace event run up to that point in time. Note that the
maximum can change as time increases and new maximums are encountered.

Min Graph Value

The Min Graph Value parameter determines what data value corresponds to the
bottom of the Data Graph.
10-42

Display Objects
The possible values are integers or CALC. If an integer is specified as the minimum,
any data that is equal to or less than that value will result in no line or bar on the
Data Graph. If CALC is specified, the minimum value will be the smallest value
found in the trace event run up to that point in time. Note that the minimum can
change as time increases and new minimums are encountered.

Fill Color

Presents the Choose Color dialog to allow the user to specify the color of the ver-
tical line or solid horizontal bar that represents the trace event in the Data Graph
when either None or Solid is selected for the Fill Style. The Fill Color should
contrast well with the Background Color of the Data Graph.

Fill Style

The Fill Style parameter determines the style of Data Graph created.

The possible choices are:

None a vertical line is drawn only at the time of a trace event

Solid all space to the right of a trace event will be filled in the
color specified by Fill Color until the next trace event is
encountered

Solid by Value all space to the right of a trace event will be filled in a
color unique to the value being shown

Figure 10-14 shows the difference between Solid and None.

Figure 10-14. Fill Style - Solid vs. None

Background Color

Presents the Choose Color dialog allowing the user to specify the color of the
background of the Data Graph. The Background Color should contrast well with
the Fill Color.

Figure 10-15 shows the same set of data drawn in three Data Graphs, each configured
differently. The data range in value from 1 to 6 and are shown at the bottom of the figure.

• The top Data Graph is configured with a minimum of 2 and a maximum of
4. Notice that several bars reach the top of the Data Graph even though
they represent different data values; also note that there is no bar where
data has a value less than the minimum.
10-43

NightTrace RT User’s Guide
• The middle Data Graph is configured with a minimum of 0 and a maxi-
mum of 10. Notice that the bars do not reach the top of the Data Graph and
that the differences between values are harder to discern.

• The bottom Data Graph is configured with a minimum of 0 and a maxi-
mum set to CALC. Notice that the two occurrences of the maximum value
of six cause bars to reach the top of the Data Graph.

Figure 10-15. Maximum vs. Minimum Values
10-44

Display Objects
Ruler 10

The Configure Ruler dialog is shown in Figure 10-16.

See “Ruler” on page 10-10 for more information.

Figure 10-16. Configure Ruler dialog

Foreground Color

Presents the Choose Color dialog allowing the user to specify the color of the
Ruler markings. The Foreground Color should contrast well with the Back-
ground Color.

Background Color

Presents the Choose Color dialog allowing the user to specify the color of the
background of the Ruler. The Background Color should contrast well with the
other items displayed on the Ruler.

Mark / Tag Color

Presents the Choose Color dialog allowing the user to specify the color of both
the mark and tag indicators which appear on the Ruler. The Mark / Tag Color
should contrast well with the Background Color.

Figure 10-17 shows both a mark and a tag on a Ruler
10-45

NightTrace RT User’s Guide
Figure 10-17. Mark and Tag Indicators

See “Mark” on page 9-12 and “Tag” on page 9-12 for more information about these
indicators.

Pause Color

Presents the Choose Color dialog allowing the user to specify the color of the
reverse-video “P” indicator used to show the point in time where the daemon log-
ging trace data was paused.

Resume Color

Presents the Choose Color dialog allowing the user to specify the color of the
reverse-video “R” indicator used to show the point in time where the daemon log-
ging trace data was resumed.

Lost Data Color

The Lost Data Color specifies the color of the reverse-video “L” that is placed on
a Ruler where NightTrace lost data.

See “Preventing Trace Event Loss” on page 5-1 for more information on lost data.

Discarded Data Color

Presents the Choose Color dialog allowing the user to specify the color of the
reverse-video “D” indicator used to show where trace events have been discarded.

Text Font

The font in which the numeric values on the Ruler are displayed.

Browse

Presents the Choose Font dialog allowing the user to specify a font by
Family, Weight, Slant, and Size.

Configuration Dialog Push Buttons 10

The following push buttons appear on all display object configuration dialogs.
10-46

Display Objects
Apply

Validate the changes you made to the configuration parameters, and apply the
changes to the display object.

Reset

Discard all changes made since the last Apply.

Close

Discard any changes made since the last change was applied and close the window.

Help

Display the help topic for the display object configuration dialog.
10-47

NightTrace RT User’s Guide
10-48

11
Chapter 11Using Expressions

11
11
11

NightTrace allows you to use expressions to aid in the analysis of trace data.

NightTrace expressions are comprised of a combination of operators and operands and
can evaluate to numbers, strings, or boolean values.

See “Operators” on page 11-1 for a list of valid operators and “Operands” on page 11-1 for
a discussion of valid operands.

Operators 11

Operators in NightTrace expressions include:

• arithmetic operators: (), *, /, % (modulo), +, -, unary -

• shift operators: <<, >>

• bitwise operators: ~ (not), & (and), ^ (exclusive or), | (or)

• logical operators: ! (not), && (and), || (or)

• relational operators: <, <=, >, >=, == (equivalence), != (non-equivalence)

• conditional operator: expr ? true_value : false_value

• unary casts to data types (where the parentheses are required): e.g., (int)

NightTrace operators follow the operator precedence rules of the C programming lan-
guage.

Operands 11

Operands include:

• constants

• function calls

• profile references (in functions only)

Operand types are largely based on the C programming language and include:
11-1

NightTrace RT User’s Guide
• integer

• double-precision floating point

• character

• string

• boolean

Constants 11

Constants are one type of operand that may be used in NightTrace expressions.

Integer literals may be expressed using typical C language notation:

• decimal literals have no special prefix

• octal literals begin with a zero

• hexadecimal literals begin with a 0x

Floating point literals are always considered to be double-precision floating point literals.

String literals must be enclosed within double quotes; to include a double quote in a con-
stant string literal, precede the double quote with a backslash character. For example:

“possible \”meltdown\” alert”

The case-insensitive boolean constants TRUE and FALSE have the values 1 and 0,
respectively.

Table 11-1 shows units and suffixes for time constants.

Functions 11

Functions are pre-defined NightTrace entities that may be used in an expression. Night-
Trace defines five classes of functions:

Table 11-1. Time Units and Constant Suffixes

Time Unit Suffix

Seconds (This is the default) s

Milliseconds (10e-3 seconds) ms

Microseconds (10e-6 seconds) us

Nanoseconds (10e-9 seconds) ns
11-2

Using Expressions
• trace event functions (see 11-13)

• state functions (see 11-36)

• offset functions (see 11-74)

• summary functions (see 11-93)

• format and table functions (see 11-100)

The general syntax of all function calls except summary, format, and table functions is as
follows. (Optional parts of function calls are in brackets ([]).)

function_name[([parameter])]

The prefix of the function_name determines its class as follows:

offset_ Functions with this prefix provide information about the trace event
at the specified offset (or ordinal trace event number). See “Offset
Functions” on page 11-74.

start_ Functions with this prefix provide information about the start event
of the most recent instance of a state. See “Start Functions” on page
11-36.

end_ Functions with this prefix provide information about the end event of
the last completed instance of a state See “End Functions” on page
11-53.

state_ Functions with this prefix provide information about instances of
states. See “Multi-State Functions” on page 11-70.

event_ Functions with this prefix provide information about instances of
events. See “Multi-Event Functions” on page 11-34.

Some functions can be optionally suffixed by a number, N, which specifies the Nth argu-
ment logged with the trace event. N defaults to 1 and can have the values 1 through the
maximum argument logged. For example,

arg() Returns the first argument

arg1() Returns the first argument

arg3() Returns the third argument

start_id() Returns a trace event ID

state_gap() Returns the time between instances of a state
11-3

NightTrace RT User’s Guide
Table 11-2 contains a complete list of functions.

Table 11-2. NightTrace Functions

Syntax Return Type

 id [([PR])]
 start_id [([PR])]
 end_id [([PR])]

 offset_id (offset_expr)

The integer trace event ID.

 arg[N] [([PR])]
 start_arg[N] [([PR])]
 end_arg[N] [([PR])]

 offset_arg[N] (offset_expr)

The integer trace event argument.

 arg[N]_dbl [([PR])]
 start_arg[N]_dbl [([PR])]
 end_arg[N]_dbl [([PR])]

offset_arg[N]_dbl (offset_expr)

The double-precision floating point trace
event argument.

 arg[N]_long [([PR])]
 start_arg[N]_long [([PR])]
 end_arg[N]_long [([PR])]

offset_arg[N]_long (offset_expr)

The long integer trace event argument.

 num_args [([PR])]
 start_num_args [([PR])]
 end_num_args [([PR])]

 offset_num_args (offset_expr)

The number of arguments associated with a
trace event.

 pid [([PR])]
 start_pid [([PR])]
 end_pid [([PR])]

 offset_pid (offset_expr)

The integer global process identifier (PID)
associated with a trace event.

 thread_id [([PR])]
 start_thread_id [([PR])]
 end_thread_id [([PR])]

offset_thread_id (offset_expr)

The integer thread identifier (thread ID)
associated with a trace event.

 task_id [([PR])]
 start_task_id [([PR])]
 end_task_id [([PR])]

 offset_task_id (offset_expr)

The integer Ada task identifier associated
with a trace event.

 tid [([PR])]
 start_tid [([PR])]
 end_tid [([PR])]

 offset_tid (offset_expr)

The integer NightTrace thread identifier
(TID) associated with a trace event.

 cpu [([PR])]
 start_cpu [([PR])]
 end_cpu [([PR])]

 offset_cpu (offset_expr)

The integer logical CPU number associated
with a trace event. This function is only
valid when applied to events from Night-
Trace kernel trace event files.
11-4

Using Expressions
 time [([PR])]
 start_time [([PR])]
 end_time [([PR])]

 offset_time (offset_expr)

The double-precision floating point time,
expressed in units of seconds, between a
trace event and the earliest trace event from
all trace event files currently in use.

 node_id [([PR])]
 start_node_id [([PR])]
 end_node_id [([PR])]

 offset_node_id (offset_expr)

The internally-assigned integer node identi-
fier associated with a trace event.

 pid_table_name [([PR])]
 start_pid_table_name [([PR])]
 end_pid_table_name [([PR])]

offset_pid_table_name (offset_expr)

The string describing the name of the pro-
cess identifier table (PID table) associated
with a trace event.

 tid_table_name [([PR])]
 start_tid_table_name [([PR])]
 end_tid_table_name [([PR])]

offset_tid_table_name (offset_expr)

The string describing the name of the inter-
nally-assigned thread identifier table (TID
table) associated with a trace event.

 node_name [([PR])]
 start_node_name [([PR])]
 end_node_name [([PR])]

 offset_node_name (offset_expr)

The string describing the name of the sys-
tem from which a trace event was logged.

 process_name [([PR])]
offset_process_name (offset_expr)

The string describing the name of the pro-
cess (PID) associated with a trace event.

 task_name [([PR])]
 offset_task_name (offset_expr)

The string describing the name of the Ada
task associated with a trace event.

 thread_name [([PR])]
 offset_thread_name (offset_expr)

The string describing the name of the C
thread associated with a trace event.

 event_gap [([PR])]
 state_gap [([PR])]

The double-precision floating point time,
expressed in units of seconds, between the
instances of either a trace event or a state.

 state_dur [([PR])] The double-precision floating point time,
expressed in units of seconds, of an instance
of a state.

 event_matches [([PR])]
 state_matches [([PR])]

 summary_matches [()]

The integer number of instances of either a
trace event or a state.

 state_status [([PR])] The boolean status of a state; true if the cur-
rent time line is within an instance of the
state, false otherwise. See “state_status()”
on page 11-73 for important details.

 offset [([PR])]
 start_offset [([PR])]
 end_offset [([PR])]

The integer ordinal number (offset) of a
trace event.

Table 11-2. NightTrace Functions

Syntax Return Type
11-5

NightTrace RT User’s Guide
Function Parameters 11

If the function has a parameter, the parentheses are required. Otherwise, they are optional.
For example,

arg2 No parentheses are required

arg2() No parentheses are required

arg2(Myprof) Parentheses are required

In many functions, the parameter is optional because it can be inferred from context. For
trace event functions, the current trace event is used if the parameter is omitted. For state
functions, the state being defined is used if the parameter is omitted. (Thus, state func-
tions without parameters can only be used inside state definitions). For example,

arg1() Operates on the current trace event

arg1(my_cond) Operates on the profile reference my_cond

end_arg1() Operates on the last completed instance of
the state being defined and can only appear
within a state definition

end_arg1(my_state) Operates on the last completed instance of
the state defined by the profile reference
my_state

 min_offset (expr)
 max_offset (expr)

The integer ordinal number (offset) of a
trace event associated with a minimum or
maximum occurrence of expr.

 min (expr)
 max (expr)
 avg (expr)
 sum (expr)

The minimum, maximum, average, or sum
of expr values before the current time. The
return type is that of expr.

get_string (table_name[, int_expr]) The character string associated with item
int_expr in string table table_name.

 get_item (table_name, “str_const”) The first integer item number associated
with string str_const in string table
table_name.

get_format (table_name[, int_expr]) The character string associated with item
int_expr in format table table_name.

 format (“format_string” [, arg] ...) A character string to format and display.

Table 11-2. NightTrace Functions

Syntax Return Type
11-6

Using Expressions
This manual uses the following conventions for function parameters:

PR A user-defined profile reference. If supplied, the function
applies to the specified profile. For more information, see
“Profiles” on page 8-1.

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

expr Any valid NightTrace expression (see “NightTrace allows you
to use expressions to aid in the analysis of trace data.” on page
11-1).

table_name An unquoted character string that represents the name of a
string table or format table.

int_expr An integer expression that acts as an index into the specified
string table or format table. int_expr must either match an
identifying integer value in the table_name table, or the
table_name table must have a default item line.

str_const A string constant literal that acts as an index into the specified
string table.

format_string A character string that contains literal characters and
conversion specifications. Conversion specifications modify
zero or more args.

arg An optional expression to be formatted and displayed.

NOTE

NightTrace does not perform semantic error checking of func-
tions. For example, if you ask for information about the second
argument, but no second argument was logged, NightTrace does
not tell you. Similarly, NightTrace does not flag the use of unde-
fined profile references.

Function Terminology 11

In order to use the NightTrace functions effectively, it may be useful to understand some
of the concepts associated with them.

A trace event represents a user-defined or kernel-defined event, logged with optional data
arguments. Events are given discrete numbers to identify them; this number is called the
trace event ID. A state is defined to be the interval of time between two specific events.

The descriptions of the functions further speak in terms of “instances” of states. These are
best defined as:

current instance The instance of a state which has begun but
has not yet completed. Thus, the current
11-7

NightTrace RT User’s Guide
time line would be positioned within the
region from the start event up to, but not
including, the end event.

last completed instance The most recent instance of a state that has
already completed. Thus, the current time
line would be positioned either on, or after,
the end event for a state.

most recent instance If the current time line is positioned within a
current instance of a state, then it is that
instance of the state. Otherwise, it is the last
completed instance of a state.

Figure 11-1 illustrates some of these concepts with a State Graph.

Figure 11-1. Function Terminology Illustrated
11-8

Using Expressions
A more detailed example is illustrated in Figure 11-2.

Figure 11-2. States and Events

The following discusses the terminology with respect to time line x, time line y, and time
line z.

Assuming the current time line was positioned at time line x in Figure 11-2, the various
“instances” would be defined as:

current instance No current instance is defined since the cur-
rent time line is not positioned within any
instance of a state.

last completed instance Instance B

most recent instance Instance B. Since the current time line is not
positioned within any instance of a state, the
most recent instance is the last completed
instance.
11-9

NightTrace RT User’s Guide
The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line x in Figure 11-2.

Assuming the current time line was positioned at time line y in Figure 11-2, the various
“instances” would be defined as:

current instance Instance C

last completed instance Instance B

most recent instance Instance C

state_status() false The current time line was not posi-
tioned within a current instance of a
state.

state_gap() ~0.000020 The durat ion of t ime in seconds
between event b and event c. The
function operated the most recent
instance of the state (instance B) and
the immediately preceding instance
(instance A).

state_dur() ~0.000090 The durat ion of t ime in seconds
between event c and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

state_matches() 2 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time() ~1.631750 The time associated with event c. The
function operated on the most recent
instance of the state (instance B).

end_time() ~1.631840 The time associated with event d. The
function operated on the last com-
pleted instance of the state (instance
B).
11-10

Using Expressions
The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line y in Figure 11-2.

Assuming the current time line was positioned at time line z in Figure 11-2, the various
“instances” would be defined as:

current instance No current instance is defined since the cur-
rent time line is positioned on the end event
of an instance of a state.

last completed instance Instance C

most recent instance Instance C

state_status() true The current time line was positioned
inside a current instance of the state
(instance C).

state_gap() ~0.000030 The durat ion of t ime in seconds
between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur() ~0.000090 The durat ion of t ime in seconds
between event c and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

state_matches() 2 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time() ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_time() ~1.631840 The time associated with event d. The
function operated on the last com-
pleted instance of the state (instance
B).
11-11

NightTrace RT User’s Guide
The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line z in Figure 11-2.

state_status() false The current time line was not posi-
tioned inside a current instance of the
state. Even though the current time
line is positioned on an end event of
the state (event f), the corresponding
instance is said to have already com-
pleted.

state_gap() ~0.000030 The durat ion of t ime in seconds
between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur() ~0.000040 The durat ion of t ime in seconds
between event e and event f. The func-
tion operated on the last completed
instance of the state (instance C).

state_matches() 3 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A, B, and C).

start_time() ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_time() ~1.631910 The time associated with event f. The
function operated on the last com-
pleted instance of the state (instance
C).
11-12

Using Expressions
Trace Event Functions 11

The trace event functions operate on either the profile reference specified to that function
or the current trace event. They include the following:

• id

• arg

• arg_dbl()

• arg_long()

• num_args()

• pid()

• cpu()

• thread_id()

• task_id()

• tid()

• offset()

• time()

• node_id()

• pid_table_name()

• tid_table_name()

• node_name()

• process_name()

• task_name()

• thread_name()

• Multi-event functions

DESCRIPTION

The id() function returns the trace event ID of the last instance of a trace event.

SYNTAX

id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the trace event ID of the last instance of the trace event
which satisfies the conditions of the specified profile. If omit-
11-13

NightTrace RT User’s Guide
ted, the function returns the trace event ID of the current trace
event. For more information, see “Profile References” on page
11-107.

RETURN TYPE

integer

SEE ALSO

• “start_id()” on page 11-37

• “end_id()” on page 11-54

• “offset_id()” on page 11-75
11-14

Using Expressions
id() 11

DESCRIPTION

The id() function returns the trace event ID of the last instance of a trace event.

SYNTAX

id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the trace event ID of the last instance of the trace event
which satisfies the conditions of the specified specified profile.
If omitted, the function returns the trace event ID of the current
trace event. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “start_id()” on page 11-37

• “end_id()” on page 11-54

• “offset_id()” on page 11-75
11-15

NightTrace RT User’s Guide
arg() 11

DESCRIPTION

The arg() function returns the value of a particular trace event argument.

SYNTAX

arg[N] [([PR])]

PARAMETERS

N Specifies the Nth argument logged with the trace event.
Defaults to 1.

PR A user-defined profile reference. If supplied, the function
returns the specified argument for the last instance of the trace
event which satisfies the conditions for the specified profile. If
omitted, the function returns the specified argument for the
current trace event. For more information, see “Profile Refer-
ences” on page 11-107.

RETURN TYPE

integer

SEE ALSO

• “arg_long()” on page 11-18

• “arg_dbl()” on page 11-17

• “num_args()” on page 11-19

• “start_arg()” on page 11-38

• “end_arg()” on page 11-55

• “offset_arg()” on page 11-76
11-16

Using Expressions
arg_dbl() 11

DESCRIPTION

The arg_dbl() function returns the value of a particular trace event argument.

SYNTAX

arg[N]_dbl [([PR])]

PARAMETERS

N Specifies the Nth argument logged with the trace event.
Defaults to 1.

PR A user-defined profile reference. If supplied, the function
returns the specified argument for the last instance of the trace
event which satisfies the conditions for the specified profile. If
omitted, the function returns the specified argument for the
current trace event. For more information, see “Profile Refer-
ences” on page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg()” on page 11-16

• “arg_long()” on page 11-18

• “num_args()” on page 11-19

• “start_arg_dbl()” on page 11-39

• “end_arg_dbl()” on page 11-56

• “offset_arg_dbl()” on page 11-77
11-17

NightTrace RT User’s Guide
arg_long() 11

DESCRIPTION

The arg_long() function returns the value of a particular trace event argument.

SYNTAX

arg[N]_long [([PR])]

PARAMETERS

N Specifies the Nth argument logged with the trace event.
Defaults to 1.

PR A user-defined profile reference. If supplied, the function
returns the specified argument for the last instance of the trace
event which satisfies the conditions for the specified profile. If
omitted, the function returns the specified argument for the
current trace event. For more information, see “Profile Refer-
ences” on page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg()” on page 11-16

• “num_args()” on page 11-19

• “start_arg_long()” on page 11-40

• “end_arg_long()” on page 11-57

• “offset_arg_long()” on page 11-78
11-18

Using Expressions
num_args() 11

DESCRIPTION

The num_args() function returns the number of arguments logged with a trace
event.

SYNTAX

num_args [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the number of arguments of the last instance of the
trace event which satisfies the conditions for the specified pro-
file. If omitted, the function returns the number of arguments
of the current trace event. For more information, see “Profile
References” on page 11-107.

RETURN TYPE

integer

SEE ALSO

• “arg()” on page 11-16

• “start_num_args()” on page 11-41

• “end_num_args()” on page 11-58

• “offset_num_args()” on page 11-79
11-19

NightTrace RT User’s Guide
pid() 11

DESCRIPTION

The pid() function returns the global process identifier (PID) associated with a
trace event.

NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the process identifier
is the actually the thread’s TID (see gettid(2)).

SYNTAX

pid [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the global process identifier of the last instance of the
trace event which satisfies the conditions for the specified pro-
file. If omitted, the function returns the global process identi-
fier of the current trace event. For more information, see “Pro-
file References” on page 11-107.

RETURN TYPE

integer

SEE ALSO

• “start_pid()” on page 11-42

• “end_pid()” on page 11-59

• “offset_pid()” on page 11-80
11-20

Using Expressions
thread_id() 11

DESCRIPTION

The thread_id() function returns the thread identifier associated with a trace
event. The thread identifier is the value of the system call gettid(2).

SYNTAX

thread_id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the thread identifier of the last instance of the trace
event which satisfies the conditions for the specified profile. If
omitted, the function returns the thread identifier of the current
trace event. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “start_thread_id()” on page 11-43

• “end_thread_id()” on page 11-60

• “offset_thread_id()” on page 11-81
11-21

NightTrace RT User’s Guide
task_id() 11

DESCRIPTION

The task_id() function returns the Ada task identifier associated with a trace
event.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

task_id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the Ada task identifier of the last instance of the trace
event which satisfies the conditions for the specified profile. If
omitted, the function returns the Ada task identifier of the cur-
rent trace event. For more information, see “Profile Refer-
ences” on page 11-107.

RETURN TYPE

integer

SEE ALSO

• “start_task_id()” on page 11-44

• “end_task_id()” on page 11-61

• “offset_task_id()” on page 11-82
11-22

Using Expressions
tid() 11

DESCRIPTION

The tid() function returns the internally-assigned NightTrace thread identifier
(TID) associated with a trace event.

SYNTAX

tid [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the NightTrace thread identifier of the last instance of
the trace event which satisfies the conditions for the specified
profile. If omitted, the function returns the NightTrace thread
identifier of the current trace event. For more information, see
“Profile References” on page 11-107.

RETURN TYPE

integer

SEE ALSO

• “start_tid()” on page 11-45

• “end_tid()” on page 11-62

• “offset_tid()” on page 11-83
11-23

NightTrace RT User’s Guide
cpu() 11

DESCRIPTION

The cpu() function returns the logical CPU number associated with a trace event.
CPUs are logically numbered starting at 0 and monotonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

cpu [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the logical CPU number of the last instance of the trace
event which satisfies the conditions for the specified profile. If
omitted, the function returns the logical CPU number of the
current trace event. For more information, see “Profile Refer-
ences” on page 11-107.

RETURN TYPE

integer

SEE ALSO

• “start_cpu()” on page 11-46

• “end_cpu()” on page 11-63

• “offset_cpu()” on page 11-84
11-24

Using Expressions
offset() 11

DESCRIPTION

The offset() function returns the ordinal number (offset) of a trace event.

SYNTAX

offset [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the ordinal number (offset) of the last instance of the
trace event which satisfies the conditions for the specified pro-
file. If omitted, the function returns the ordinal number (offset)
of the current trace event. For more information, see “Profile
References” on page 11-107.

RETURN TYPE

integer

SEE ALSO

• “start_offset()” on page 11-47

• “end_offset()” on page 11-64

• “min_offset()” on page 11-97

• “max_offset()” on page 11-98
11-25

NightTrace RT User’s Guide
time() 11

DESCRIPTION

The time() function returns the time, in seconds, associated with a trace event.
Times are relative to the earliest trace event from all trace data files currently in use.

SYNTAX

time [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the time, in seconds, of the last instance of the trace
event which satisfies the conditions for the specified profile. If
omitted, the function returns the time, in seconds, of the cur-
rent trace event. For more information, see “Profile Refer-
ences” on page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “event_gap()” on page 11-34

• “start_time()” on page 11-48

• “end_time()” on page 11-65

• “state_gap()” on page 11-70

• “state_dur()” on page 11-71

• “offset_time()” on page 11-85
11-26

Using Expressions
node_id() 11

DESCRIPTION

The node_id() function returns the internally-assigned node identifier associated
with a trace event.

NOTE

The node_id() function is of limited usefulness since the node
identifier is an internally-assigned integer number assigned by
NightTrace. The node_name() function is more useful, as it
returns the name of the system from which a trace event was
logged. (See “node_name()” on page 11-30 for more information
about this function.)

SYNTAX

node_id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the node identifier of the last instance of the trace event
which satisfies the conditions for the specified profile. If omit-
ted, the function returns the node identifier of the current trace
event. For more information, see “Profile References” on page
11-107.

RETURN TYPE

integer

SEE ALSO

• “start_node_id()” on page 11-49

• “offset_node_id()” on page 11-86

• “end_node_id()” on page 11-66
11-27

NightTrace RT User’s Guide
pid_table_name() 11

DESCRIPTION

The pid_table_name() function returns the name of the internally-assigned
NightTrace process identifier table (PID table) associated with a trace event.

SYNTAX

pid_table_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the name of the process identifier table (PID table) of
the last instance of the trace event which satisfies the condi-
tions for the specified profile. If omitted, the function returns
the name of the process identifier table (PID table) of the cur-
rent trace event. For more information, see “Profile Refer-
ences” on page 11-107.

RETURN TYPE

string

SEE ALSO

• “start_pid_table_name()” on page 11-50

• “offset_pid_table_name()” on page 11-87

• “end_pid_table_name()” on page 11-67
11-28

Using Expressions
tid_table_name() 11

DESCRIPTION

The tid_table_name() function returns the name of the internally-assigned
NightTrace thread identifier table (TID table) associated with a trace event.

SYNTAX

tid_table_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the name of the thread identifier table (TID table) of the
last instance of the trace event which satisfies the conditions
for the specified profile. If omitted, the function returns the
name of the thread identifier table (TID table) of the current
trace event. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

string

SEE ALSO

• “start_tid_table_name()” on page 11-51

• “offset_tid_table_name()” on page 11-88

“end_tid_table_name()” on page 11-68
11-29

NightTrace RT User’s Guide
node_name() 11

DESCRIPTION

The node_name() function returns the name of the system from which a trace
event was logged.

SYNTAX

node_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the name of system from which the last instance of the
trace event which satisfies the conditions for the specified pro-
file was logged. If omitted, the function returns the name of
the system from which the current trace event was logged. For
more information, see “Profile References” on page 11-107.

RETURN TYPE

string

SEE ALSO

• “start_node_name()” on page 11-52

• “offset_node_name()” on page 11-89

• “end_node_name()” on page 11-69
11-30

Using Expressions
process_name() 11

DESCRIPTION

The process_name() function returns the name of the process associated with a
trace event.

SYNTAX

process_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the name associated with the PID of the last instance of
the trace event which satisfies the conditions for the specified
profile. If omitted, the function returns the name associated
with the PID of the current trace event. For more information,
see “Profile References” on page 11-107.

RETURN TYPE

string

SEE ALSO

• “offset_process_name()” on page 11-90
11-31

NightTrace RT User’s Guide
task_name() 11

DESCRIPTION

The task_name() function returns the name of the task associated with a trace
event.

NOTE

This function is only meaningful for trace events which were
logged from Ada tasking programs.

SYNTAX

task_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the name of the task associated with the last instance of
the trace event which satisfies the conditions for the specified
profile. If omitted, the function returns the name of the task
associated with the current trace event. For more information,
see “Profile References” on page 11-107.

RETURN TYPE

string

SEE ALSO

• “offset_task_name()” on page 11-91
11-32

Using Expressions
thread_name() 11

DESCRIPTION

The thread_name() function returns the thread name associated with a trace
event.

Thread names are only available when user trace data is loaded and then only for
threads registered with the NightTrace Logging API.

See “Threads and Logging” on page 2-26 for a discussion of the threads and the
NightTrace Logging API.

SYNTAX

thread_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function
returns the thread name associated with the last instance of the
trace event which satisfies the conditions for the specified pro-
file. If omitted, the function returns the thread name associated
with the current trace event. For more information, see “Pro-
file References” on page 11-107.

RETURN TYPE

string

SEE ALSO

• “offset_thread_name()” on page 11-92
11-33

NightTrace RT User’s Guide
Multi-Event Functions 11

Multi-event functions return information about one or more instances of an event:

• event_gap()

• event_matches()

event_gap() 11

DESCRIPTION

The event_gap() function returns the time, in seconds, between the most recent
occurrence of a specific event and its immediately preceding occurrence.

SYNTAX

event_gap [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function cal-
culates the gap between the two most recent occurrences of
events which satisfy the conditions of the specified profile. If
omitted, the function calculates the gap between the current
trace event and the event immediately preceding it. For more
information, see “Profile References” on page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “time()” on page 11-26

• “state_gap()” on page 11-70

• “state_dur()” on page 11-71
11-34

Using Expressions
event_matches() 11

DESCRIPTION

The event_matches() function returns the number of occurrences of a trace
event on or before the current time line.

SYNTAX

event_matches [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, the function cal-
culates the number of occurrences of events which satisfy the
conditions of the specified profile on or before the current time
line. If omitted, the function calculates the number of occur-
rences of all events on or before the current time line. For
more information, see “Profile References” on page 11-107.

RETURN TYPE

integer

SEE ALSO

• “summary_matches()” on page 11-99
11-35

NightTrace RT User’s Guide
State Functions 11

In its simplest form, a state is a region of time bounded by two trace events. A state defi-
nition requires the specification of two trace events, a start event and an end event, respec-
tively. Additional conditions may be specified in a state definition to further constrain the
state. The state functions include the following:

• start functions (see “Start Functions” on page 11-36)

• end functions (see “End Functions” on page 11-53)

• multi-state functions (see “Multi-State Functions” on page 11-70)

NOTE

Currently, NightTrace does not supported nesting of states. Thus,
once the conditions which satisfy a start event are met, no other
instances of that state can begin until the end condition has been
met.

Start Functions 11

The start functions provide information about the start event of the most recent instance of
a state. The state to which the start function applies is either the profile reference specified
to the function, or the state being currently defined. Thus, if a profile is not specified, start
functions are only meaningful when used in expressions associated within a state defini-
tion. In addition, start functions should not be used in a recursive manner in a Start
Expression; a start function should not be specified in a Start Expression that applies
to the state definition containing that Start Expression. Conversely, an End Expres-
sion may include start functions that apply to the state definition containing that End
Expression.

NOTE

Start functions provide information about the most recent instance
of a state, whereas end functions (see “End Functions” on page
11-53) provide information about the last completed instance of a
state.

Start functions include the following:

• start_id()

• start_arg()

• start_arg_dbl()

• start_arg_long()

• start_num_args()
11-36

Using Expressions
• start_pid()

• start_thread_id()

• start_task_id()

• start_tid()

• start_cpu()

• start_offset()

• start_time()

• start_node_id()

• start_pid_table_name()

• start_tid_table_name()

• start_node_name()

start_id() 11

DESCRIPTION

The start_id() function returns the trace event ID of the start event of the most
recent instance of a state.

SYNTAX

start_id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “id()” on page 11-15

• “end_id()” on page 11-54

• “offset_id()” on page 11-75
11-37

NightTrace RT User’s Guide
start_arg() 11

DESCRIPTION

The start_arg() function returns the value of a particular trace event argument
associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N] [([PR])]

PARAMETERS

N Specifies the Nth argument logged with the start event.
Defaults to 1.

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “arg()” on page 11-16

• “start_arg_dbl()” on page 11-39

• “start_num_args()” on page 11-41

• “end_arg()” on page 11-55

• “offset_arg()” on page 11-76
11-38

Using Expressions
start_arg_dbl() 11

DESCRIPTION

The start_arg_dbl() function returns the value of a particular trace event
argument associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N]_dbl [([PR])]

PARAMETERS

N Specifies the Nth argument logged with the start event.
Defaults to 1.

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_dbl()” on page 11-17

• “start_arg()” on page 11-38

• “start_num_args()” on page 11-41

• “end_arg_dbl()” on page 11-56

• “offset_arg_dbl()” on page 11-77
11-39

NightTrace RT User’s Guide
start_arg_long() 11

DESCRIPTION

The start_arg_long() function returns the value of a particular trace event
argument associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N]_long [([PR])]

PARAMETERS

N Specifies the Nth argument logged with the start event.
Defaults to 1.

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_dbl()” on page 11-17

• “start_arg()” on page 11-38

• “start_num_args()” on page 11-41

• “end_arg_dbl()” on page 11-56

• “offset_arg_long()” on page 11-78
11-40

Using Expressions
start_num_args() 11

DESCRIPTION

The start_num_args() function returns the number of arguments associated
with the start event of the most recent instance of a state.

SYNTAX

start_num_args [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “start_arg()” on page 11-38

• “num_args()” on page 11-19

• “end_num_args()” on page 11-58

• “offset_num_args()” on page 11-79
11-41

NightTrace RT User’s Guide
start_pid() 11

DESCRIPTION

The start_pid() function returns the PID associated with the start event of the
most recent instance of a state.

NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the process identifier
is the actually the thread’s TID (see gettid(2)).

SYNTAX

start_pid [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “pid()” on page 11-20

• “end_pid()” on page 11-59

• “offset_pid()” on page 11-80
11-42

Using Expressions
start_thread_id() 11

DESCRIPTION

The start_thread_id() function returns the thread identifier associated with
the start event of the most recent instance of a state. The thread identifier is the
value of the system call gettid(2).

SYNTAX

start_thread_id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “thread_id()” on page 11-21

• “end_thread_id()” on page 11-60

• “offset_thread_id()” on page 11-81
11-43

NightTrace RT User’s Guide
start_task_id() 11

DESCRIPTION

The start_task_id() function returns the Ada task identifier associated with
the start event of the most recent instance of a state.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

start_task_id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “task_id()” on page 11-22

• “end_task_id()” on page 11-61

• “offset_task_id()” on page 11-82
11-44

Using Expressions
start_tid() 11

DESCRIPTION

The start_tid() function returns the internally-assigned NightTrace thread
identifier (TID) associated with the start event of the most recent instance of a state.

SYNTAX

start_tid [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “tid()” on page 11-23

• “end_tid()” on page 11-62

• “offset_tid()” on page 11-83
11-45

NightTrace RT User’s Guide
start_cpu() 11

DESCRIPTION

The start_cpu() function returns the logical CPU number associated with the
start event of the most recent instance of a state. CPUs are logically numbered start-
ing at 0 and monotonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

start_cpu [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “cpu()” on page 11-24

• “end_cpu()” on page 11-63

• “offset_cpu()” on page 11-84
11-46

Using Expressions
start_offset() 11

DESCRIPTION

The start_offset() function returns the ordinal number (offset) of the start
event of the most recent instance of a state.

SYNTAX

start_offset [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “offset()” on page 11-25

• “end_offset()” on page 11-64
11-47

NightTrace RT User’s Guide
start_time() 11

DESCRIPTION

The start_time() function returns the time, in seconds, associated with the start
event of the most recent instance of a state. Times are relative to the earliest trace
event from all trace data files currently in use.

SYNTAX

start_time [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “time()” on page 11-26

• “end_time()” on page 11-65

• “state_gap()” on page 11-70

• “state_dur()” on page 11-71

• “offset_time()” on page 11-85
11-48

Using Expressions
start_node_id() 11

DESCRIPTION

The start_node_id() function returns the internally-assigned node identifier
associated with the start event of the most recent instance of a state.

SYNTAX

start_node_id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “node_id()” on page 11-27

• “offset_node_id()” on page 11-86

• “end_node_id()” on page 11-66
11-49

NightTrace RT User’s Guide
start_pid_table_name() 11

DESCRIPTION

The start_pid_table_name() function returns the name of the inter-
nally-assigned NightTrace process identifier table (PID table) associated with the
start event of the most recent instance of a state.

SYNTAX

start_pid_table_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

string

SEE ALSO

• “pid_table_name()” on page 11-28

• “offset_pid_table_name()” on page 11-87

• “end_pid_table_name()” on page 11-67
11-50

Using Expressions
start_tid_table_name() 11

DESCRIPTION

The start_tid_table_name() function returns the name of the inter-
nally-assigned NightTrace thread identifier table (TID table) associated with the
start event of the most recent instance of a state.

SYNTAX

start_tid_table_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

string

SEE ALSO

• “tid_table_name()” on page 11-29

• “offset_tid_table_name()” on page 11-88

“end_tid_table_name()” on page 11-68
11-51

NightTrace RT User’s Guide
start_node_name() 11

DESCRIPTION

The start_node_name() function returns the name of the system from which
the start event of the most recent instance of a state was logged.

SYNTAX

start_node_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

string

SEE ALSO

• “node_name()” on page 11-30

• “offset_node_name()” on page 11-89

• “end_node_name()” on page 11-69
11-52

Using Expressions
End Functions 11

The end functions provide information about the end event of the last completed instance
of a state. The state to which the end function applies is either the profile reference speci-
fied to the function, or the state being currently defined. Thus, if a profile is not specified,
end functions are only meaningful when used in expressions associated within a state def-
inition.

NOTE

End functions provide information about the last completed
instance of a state, whereas start functions (see “Start Functions”
on page 11-36) provide information about the most recent
instance of a state.

End functions include:

• end_id()

• end_arg()

• end_arg_dbl()

• end_num_args()

• end_pid()

• end_thread_id()

• end_task_id()

• end_tid()

• end_cpu()

• end_offset()

• end_time()

• end_node_id()

• end_pid_table_name()

• end_tid_table_name()

• end_node_name()
11-53

NightTrace RT User’s Guide
end_id() 11

DESCRIPTION

The end_id() function returns the trace event ID associated with the end event of
the last completed instance of a state.

SYNTAX

end_id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “id()” on page 11-15

• “start_id()” on page 11-37

• “offset_id()” on page 11-75
11-54

Using Expressions
end_arg() 11

DESCRIPTION

The end_arg() function returns the value of a particular trace event argument
associated with the end event of the last completed instance of a state.

SYNTAX

end_arg[N] [([PR])]

PARAMETERS

N Specifies the Nth argument logged with the trace event.
Defaults to 1.

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “arg()” on page 11-16

• “start_arg()” on page 11-38

• “end_arg()” on page 11-55

• “end_num_args()” on page 11-58

• “offset_arg()” on page 11-76
11-55

NightTrace RT User’s Guide
end_arg_dbl() 11

DESCRIPTION

The end_arg_dbl() function returns the value of a particular trace event argu-
ment associated with the end event of the last completed instance of a state.

SYNTAX

end_arg[N]_dbl [([PR])]

PARAMETERS

N Specifies the Nth argument logged with the trace event.
Defaults to 1.

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_dbl()” on page 11-17

• “start_arg_dbl()” on page 11-39

• “end_num_args()” on page 11-58

• “offset_arg_dbl()” on page 11-77
11-56

Using Expressions
end_arg_long() 11

DESCRIPTION

The end_arg_long() function returns the value of a particular trace event argu-
ment associated with the end event of the last completed instance of a state.

SYNTAX

end_arg[N]_long [([PR])]

PARAMETERS

N Specifies the Nth argument logged with the trace event.
Defaults to 1.

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_long()” on page 11-18

• “start_arg_long()” on page 11-40

• “end_num_args()” on page 11-58

• “offset_arg_long()” on page 11-78
11-57

NightTrace RT User’s Guide
end_num_args() 11

DESCRIPTION

The end_num_args() function returns the number of arguments associated with
the end event of the last completed instance of a state.

SYNTAX

end_num_args [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 11-19

• “start_num_args()” on page 11-41

• “end_arg()” on page 11-55

• “offset_num_args()” on page 11-79
11-58

Using Expressions
end_pid() 11

DESCRIPTION

The end_pid() function returns the PID associated with the end event of the last
completed instance of a state.

NOTE

All Linux threads within the same program share the same PID value. For trace
events generated with the NightTrace Logging API, the value logged as the process
identifier is the common PID. For kernel events, the value logged for the process
identifier is the actually the thread’s TID (see gettid(2)).

SYNTAX

end_pid [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “pid()” on page 11-20

• “start_pid()” on page 11-42

• “offset_pid()” on page 11-80
11-59

NightTrace RT User’s Guide
end_thread_id() 11

DESCRIPTION

The end_thread_id() function returns the thread identifier associated with the
end event of the last completed instance of a state. The thread identifier is that
returned by the system call gettid(2).

SYNTAX

end_thread_id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “thread_id()” on page 11-21

• “start_thread_id()” on page 11-43

• “offset_thread_id()” on page 11-81
11-60

Using Expressions
end_task_id() 11

DESCRIPTION

The end_task_id() function returns the Ada task identifier associated with the
end event of the last completed instance of a state.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

end_task_id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “task_id()” on page 11-22

• “start_task_id()” on page 11-44

• “offset_task_id()” on page 11-82
11-61

NightTrace RT User’s Guide
end_tid() 11

DESCRIPTION

The end_tid() function returns the internally-assigned NightTrace thread identi-
fier (TID) associated with the end event of the last completed instance of a state.

SYNTAX

end_tid [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “tid()” on page 11-23

• “start_tid()” on page 11-45

• “offset_tid()” on page 11-83
11-62

Using Expressions
end_cpu() 11

DESCRIPTION

The end_cpu() function returns the logical CPU number associated with the end
event of the last completed instance of a state. CPUs are logically numbered start-
ing at 0 and monotonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

end_cpu [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “cpu()” on page 11-24

• “start_cpu()” on page 11-46

• “offset_cpu()” on page 11-84
11-63

NightTrace RT User’s Guide
end_offset() 11

DESCRIPTION

The end_offset() function returns the ordinal number (offset) of the end event
of the last completed instance of a state.

SYNTAX

end_offset [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “offset()” on page 11-25

• “start_offset()” on page 11-47
11-64

Using Expressions
end_time() 11

DESCRIPTION

The end_time() function returns the time, in seconds, associated with the end
event of the last completed instance of a state. Times are relative to the earliest trace
event from all trace data files currently in use.

SYNTAX

end_time [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “time()” on page 11-26

• “start_time()” on page 11-48

• “state_gap()” on page 11-70

• “state_dur()” on page 11-71

• “offset_time()” on page 11-85
11-65

NightTrace RT User’s Guide
end_node_id() 11

DESCRIPTION

The end_node_id() function returns the internally-assigned node identifier asso-
ciated with the end event of the last completed instance of a state.

SYNTAX

end_node_id [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “node_id()” on page 11-27

• “start_node_id()” on page 11-49

• “offset_node_id()” on page 11-86
11-66

Using Expressions
end_pid_table_name() 11

DESCRIPTION

The end_pid_table_name() function returns the name of the inter-
nally-assigned NightTrace process identifier table (PID table) associated with the
end event of the last completed instance of a state.

SYNTAX

end_pid_table_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

string

SEE ALSO

• “pid_table_name()” on page 11-28

• “start_pid_table_name()” on page 11-50

• “offset_pid_table_name()” on page 11-87
11-67

NightTrace RT User’s Guide
end_tid_table_name() 11

DESCRIPTION

The end_tid_table_name() function returns the name of the inter-
nally-assigned NightTrace thread identifier table (TID table) associated with the end
event of the last completed instance of a state.

SYNTAX

end_tid_table_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

string

SEE ALSO

• “tid_table_name()” on page 11-29

• “start_tid_table_name()” on page 11-51

• “offset_tid_table_name()” on page 11-88
11-68

Using Expressions
end_node_name() 11

DESCRIPTION

The end_node_name() function returns the name of the system from which the
end event of the last completed instance of a state was logged.

SYNTAX

end_node_name [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

string

SEE ALSO

• “node_name()” on page 11-30

• “start_node_name()” on page 11-52

• “offset_node_name()” on page 11-89
11-69

NightTrace RT User’s Guide
Multi-State Functions 11

Multi-state functions return information about one or more instances of a state:

• state_gap()

• state_dur()

• state_matches()

• state_status()

For restrictions on usage, see “State Graph” on page 10-31.

state_gap() 11

DESCRIPTION

The state_gap() function returns the time in seconds between the start event of
the most recent instance of the state and the end event of the instance immediately
preceding it or zero if there was no previous instance.

SYNTAX

state_gap [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “start_time()” on page 11-48

• “end_time()” on page 11-65

• “event_gap()” on page 11-34

• “state_dur()” on page 11-71
11-70

Using Expressions
state_dur() 11

DESCRIPTION

The state_dur() function returns the time in seconds between the start event and the
end event of the last completed instance of a state. Thus, if the current time line occurs
within an instance of the state but before it has ended, state_dur() returns the duration
of the previous instance or zero if there was no previous instance.

SYNTAX

state_dur [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

double-precision floating point

SEE ALSO

• “state_gap()” on page 11-70
11-71

NightTrace RT User’s Guide
state_matches() 11

DESCRIPTION

The state_matches() function returns the number of completed instances of a
state on or before the current time line.

SYNTAX

state_matches [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

integer

SEE ALSO

• “Start Functions” on page 11-36

• “summary_matches()” on page 11-99
11-72

Using Expressions
state_status() 11

DESCRIPTION

The state_status() function indicates whether the current time line resides
within a current instance of a state. Thus, if the current time line is positioned in the
region from the start event up to, but not including, the end event of an instance of
the state, the return value is TRUE. Otherwise, it is FALSE.

SYNTAX

state_status [([PR])]

PARAMETERS

PR A user-defined profile reference. If supplied, it specifies the
state to which the function applies. If omitted, the function
may only be used within a state definition and then applies to
that state. For more information, see “Profile References” on
page 11-107.

RETURN TYPE

boolean
11-73

NightTrace RT User’s Guide
Offset Functions 11

All offset functions take an expression that evaluates to an ordinal trace event (offset) as a
parameter. (Offsets begin at zero.) These functions include the following:

• offset_id()

• offset_arg()

• offset_arg_dbl()

• offset_arg_long()

• offset_num_args()

• offset_pid()

• offset_thread_id()

• offset_task_id()

• offset_tid()

• offset_cpu ()

• offset_time()

• offset_node_id()

• offset_pid_table_name()

• offset_tid_table_name()

• offset_node_name()

• offset_process_name()

• offset_task_name()

• offset_thread_name()

Usually, these functions take one of the following functions as a parameter:

• offset()

• start_offset()

• end_offset()

• min_offset()

• max_offset()

For information about these functions, see “offset()” on page 11-25, “start_offset()” on
page 11-47, “end_offset()” on page 11-64, “min_offset()” on page 11-97, and
“max_offset()” on page 11-98.
11-74

Using Expressions
offset_id() 11

DESCRIPTION

The offset_id() function returns the trace event ID of the ordinal trace event
(offset).

SYNTAX

offset_id(offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

• “id()” on page 11-15

• “start_id()” on page 11-37

• “end_id()” on page 11-54
11-75

NightTrace RT User’s Guide
offset_arg() 11

DESCRIPTION

The offset_arg() function returns the value of a particular trace event argument
for the ordinal trace event (offset).

SYNTAX

offset_arg[N] (offset_expr)

PARAMETERS

N Specifies the Nth argument logged with the trace event.
Defaults to 1.

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

• “arg()” on page 11-16

• “start_arg()” on page 11-38

• “end_arg()” on page 11-55

• “offset_arg_dbl()” on page 11-77

• “offset_num_args()” on page 11-79
11-76

Using Expressions
offset_arg_dbl() 11

DESCRIPTION

The offset_arg_dbl() function returns the value of a particular trace event
argument for the ordinal trace event (offset).

SYNTAX

offset_arg[N]_dbl (offset_expr)

PARAMETERS

N Specifies the Nth argument logged with the trace event.
Defaults to 1.

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_dbl()” on page 11-17

• “start_arg_dbl()” on page 11-39

• “end_arg_dbl()” on page 11-56

• “offset_arg()” on page 11-76

• “offset_num_args()” on page 11-79
11-77

NightTrace RT User’s Guide
offset_arg_long() 11

DESCRIPTION

The offset_arg_long() function returns the value of a particular trace event
argument for the ordinal trace event (offset).

SYNTAX

offset_arg[N]_long (offset_expr)

PARAMETERS

N Specifies the Nth argument logged with the trace event.
Defaults to 1.

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_long()” on page 11-18

• “start_arg_long()” on page 11-40

• “end_arg_long()” on page 11-57

• “offset_arg()” on page 11-76

• “offset_num_args()” on page 11-79
11-78

Using Expressions
offset_num_args() 11

DESCRIPTION

The offset_num_args() function returns the number of arguments logged with
the ordinal trace event (offset).

SYNTAX

offset_num_args (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 11-19

• “start_num_args()” on page 11-41

• “end_num_args()” on page 11-58

• “offset_arg()” on page 11-76

• “offset_arg_dbl()” on page 11-77
11-79

NightTrace RT User’s Guide
offset_pid() 11

DESCRIPTION

The offset_pid() function returns the PID from which the ordinal trace event
(offset) was logged.

NOTE

All Linux threads within the same program share the same PID value. For trace
events generated with the NightTrace Logging API, the value logged as the process
identifier is the common PID. For kernel events, the value logged for the process
identifier is the actually the thread’s TID (see gettid(2)).

SYNTAX

offset_pid (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

• “pid()” on page 11-20

• “start_pid()” on page 11-42

• “end_pid()” on page 11-59
11-80

Using Expressions
offset_thread_id() 11

DESCRIPTION

The offset_thread_id() function returns the thread identifier from which the
ordinal trace event (offset) was logged. The thread identifier is the value returned
from the system call gettid(2).

SYNTAX

offset_thread_id (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

• “thread_id()” on page 11-21

• “start_thread_id()” on page 11-43

• “end_thread_id()” on page 11-60
11-81

NightTrace RT User’s Guide
offset_task_id() 11

DESCRIPTION

The offset_task_id() function returns the Ada task identifier from which the
ordinal trace event (offset) was logged.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

offset_task_id (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

• “task_id()” on page 11-22

• “start_task_id()” on page 11-44

• “end_task_id()” on page 11-61
11-82

Using Expressions
offset_tid() 11

DESCRIPTION

The offset_tid() function returns the internally-assigned NightTrace thread
identifier (TID) from which the ordinal trace event (offset) was logged.

SYNTAX

offset_tid (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

• “tid()” on page 11-23

• “start_tid()” on page 11-45

• “end_tid()” on page 11-62
11-83

NightTrace RT User’s Guide
offset_cpu() 11

DESCRIPTION

The offset_cpu() function returns the logical CPU number on which the ordinal
trace event (offset) occurred. CPUs are logically numbered starting at 0 and mono-
tonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

offset_cpu (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

• “cpu()” on page 11-24

• “start_cpu()” on page 11-46

• “end_cpu()” on page 11-63
11-84

Using Expressions
offset_time() 11

DESCRIPTION

The offset_time() function returns the time in seconds between the beginning
of the trace run and the ordinal trace event (offset).

SYNTAX

offset_time (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

double-precision floating point

SEE ALSO

• “time()” on page 11-26

• “start_time()” on page 11-48

• “end_time()” on page 11-65
11-85

NightTrace RT User’s Guide
offset_node_id() 11

DESCRIPTION

The offset_node_id() function returns the internally-assigned node identifier
from which the ordinal trace event (offset) was logged.

SYNTAX

offset_node_id (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

• “node_id()” on page 11-27

• “start_node_id()” on page 11-49

• “end_node_id()” on page 11-66
11-86

Using Expressions
offset_pid_table_name() 11

DESCRIPTION

The offset_pid_table_name() function returns the name of the inter-
nally-assigned NightTrace process identifier table (PID table) for the ordinal trace
event (offset).

SYNTAX

offset_pid_table_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

• “pid_table_name()” on page 11-28

• “start_pid_table_name()” on page 11-50

• “end_pid_table_name()” on page 11-67
11-87

NightTrace RT User’s Guide
offset_tid_table_name() 11

DESCRIPTION

The offset_tid_table_name() function returns the name of the inter-
nally-assigned NightTrace thread identifier table (TID table) for the ordinal trace
event (offset).

SYNTAX

offset_tid_table_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

• “tid_table_name()” on page 11-29

• “start_tid_table_name()” on page 11-51

• “end_tid_table_name()” on page 11-68
11-88

Using Expressions
offset_node_name() 11

DESCRIPTION

The offset_node_name() function returns the name of the system from which
the ordinal trace event (offset) was logged.

SYNTAX

offset_node_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

• “node_name()” on page 11-30

• “start_node_name()” on page 11-52

• “end_node_name()” on page 11-69
11-89

NightTrace RT User’s Guide
offset_process_name() 11

DESCRIPTION

The offset_process_name() function returns the name of the process (PID)
from which the ordinal trace event (offset) was logged.

SYNTAX

offset_process_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

• “process_name()” on page 11-31
11-90

Using Expressions
offset_task_name() 11

DESCRIPTION

The offset_task_name() function returns the name of the task from which the
ordinal trace event (offset) was logged.

NOTE

This function is only meaningful for trace events which were
logged from Ada tasking programs.

SYNTAX

offset_task_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

• “task_name()” on page 11-32
11-91

NightTrace RT User’s Guide
offset_thread_name() 11

DESCRIPTION

The offset_thread_name() function returns the thread name from which the
ordinal trace event (offset) was logged.

SYNTAX

offset_thread_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

• “thread_name()” on page 11-33
11-92

Using Expressions
Summary Functions 11

You usually use summary functions on the Summar i ze Fo rm . Except for
summary_matches(), all of these functions take another expression as a parameter.
They include the following:

• min()

• max()

• avg()

• sum()

• min_offset()

• max_offset()

• summary_matches()

min() 11

DESCRIPTION

The min() function returns the minimum value of all occurrences of expr within a
time range. When used in a Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX

min (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

• “Summary Functions” on page 11-93

• “Summarizing Statistical Information” on page 8-19
11-93

NightTrace RT User’s Guide
max() 11

DESCRIPTION

The max() function returns the maximum value of all occurrences of expr within a
time range. When used in a Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX

max (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

• “Summary Functions” on page 11-93

• “Summarizing Statistical Information” on page 8-19
11-94

Using Expressions
avg() 11

DESCRIPTION

The avg() function returns the average value of all occurrences of expr within a
time range. When used in a Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX

avg (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

• “Summary Functions” on page 11-93

• “Summarizing Statistical Information” on page 8-19
11-95

NightTrace RT User’s Guide
sum() 11

DESCRIPTION

The sum() function returns the sum value of all occurrences of expr within a time
range. When used in a Summarize Form, the time range is defined by that form.
When used elsewhere, the time range is defined as the region starting with the first
trace event and ending with the current trace event.

SYNTAX

sum (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

• “Summary Functions” on page 11-93

• “Summarizing Statistical Information” on page 8-19
11-96

Using Expressions
min_offset() 11

DESCRIPTION

The min_offset() function returns the ordinal trace event (offset) where the
minimum value of the parameter occurred for matches in the time range. Thus, if
the same minimum was seen more than once, the offset corresponds to the first one
seen.

SYNTAX

min_offset (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

integer

NOTE

There is no function that returns the trace event ID where the minimum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

offset_id(min_offset(arg1()))

SEE ALSO

• “Summary Functions” on page 11-93

• “Summarizing Statistical Information” on page 8-19
11-97

NightTrace RT User’s Guide
max_offset() 11

DESCRIPTION

The max_offset() function returns the ordinal trace event (offset) where the
maximum value of the parameter occurred for matches in the time range. Thus, if
the same maximum was seen more than once, the offset corresponds to the first one
seen.

SYNTAX

max_offset (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

integer

NOTE

There is no function that returns the trace event ID where the maximum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

offset_id(max_offset(arg1()))

SEE ALSO

• “Summary Functions” on page 11-93

• “Summarizing Statistical Information” on page 8-19
11-98

Using Expressions
summary_matches() 11

DESCRIPTION

The summary_matches() function returns the number of times the summary cri-
teria was matched in the time range.

SYNTAX

summary_matches ()

RETURN TYPE

integer

SEE ALSO

• “event_matches()” on page 11-35

• “state_matches()” on page 11-72
11-99

NightTrace RT User’s Guide
Format and Table Functions 11

The format function allows you to display a string. The table functions allow you to
extract information from user-defined and pre-defined string and format tables. These
functions include the following:

• get_string()

• get_item()

• get_format()

• format()

For more information about tables, see “Tables” on page 6-14 and “Kernel String Tables”
on page 12-14.

get_string() 11

The get_string() routine dynamically looks up a string in a string table.

SYNTAX

get_string (table_name[, int_expr])

PARAMETERS

table_name table_name is an unquoted character string that represents the
name of a string table. To avoid possible forward reference
problems, try to make your get_string() calls refer to pre-
viously-defined string tables. The following string table names
are pre-defined in NightTrace: event, pid, tid, bool-
ean, name_pid, name_tid, node_name,
pid_nodename, tid_nodename, vector, syscall,
and device. For more information on these tables, see
“Pre-Defined Strings Tables” on page 6-17 and “Kernel String
Tables” on page 12-14.

int_expr int_expr is an integer expression that acts as an index into the
specified string table. int_expr must either match an identifying
integer value in the table_name string table, or the table_name
string table must have a default item line; otherwise
get_string() returns a string of int_expr in decimal. Often
int_expr is based on a NightTrace function.

If your table consists of only a default item line, omit this
parameter.
11-100

Using Expressions
DESCRIPTION

The following NightTrace constructs can call get_string() to dynamically
locate a static string in a string table:

• A Condition, Start Condition, or End Condition of a display
object configuration

• A Condition, Start Condition, or End Condition of a Profile
configuration

• An Output Text field of a Data Box

• A value field of a format table

For each get_string() call, NightTrace follows these steps:

1. Evaluates int_expr

2. Uses this value as an index into table_name

3. Retrieves the associated string from table_name

4. Returns a string

The following lines provide a brief example of a call to get_string().

string_table (conditions) = {
 item = 1, “normal”;
 item = 50, “YELLOW ALERT”;
 item = 99, “RED ALERT”;
 default_item = “N/A”;
};

In this example the numeric argument associated with a trace event represents the
current conditions (conditions). If the argument has the value 99, NightTrace:

1. Uses the value 99 as in index into conditions

2. Retrieves the associated string (“RED ALERT”) from conditions

3. Returns “RED ALERT”

RETURN TYPES

On successful completion, get_string() returns a string from a string table.
NightTrace returns a string of the item number, int_expr, in decimal if table_name is
not found, or if int_expr is not found and there is no default item line. The first time
table_name is not found, NightTrace issues an error message. Because
get_string() returns a string, you can use it anywhere a string expression is
appropriate.

For more information on string tables, see “String Tables” on page 6-16.
11-101

NightTrace RT User’s Guide
get_item() 11

The get_item() routine looks up an item number in a string table.

SYNTAX

int get_item (table_name, “str_const”)

PARAMETERS

table_name table_name is an unquoted character string that represents the
name of a string table. To avoid possible forward reference
problems, try to make your get_item() calls refer to previ-
ously-defined string tables. The following string table names
are pre-defined in NightTrace: event, pid, tid, bool-
ean, name_pid, name_tid, node_name,
pid_nodename, tid_nodename, vector, syscall,
and device. For more information on these tables, see “Ker-
nel String Tables” on page 12-14.

str_const str_const is a string constant literal that acts as an index into the
specified string table. str_const must either exactly match a
string value in the table_name string table, or the table_name
string table must have a default item line; otherwise the results
are undefined. A table_name may contain several item lines
with the same str_const value.

DESCRIPTION

Typically, a get_item() call is used in conditional expressions for profiles,
searches, summaries, or display object configurations.

The get_item() call returns an index number into the specified string table
(table_name) for the first item in the table which matches the specified string
(str_const).

For example, assume that the following string table definition is in your page con-
figuration file (see “String Tables” on page 6-16):

string_table (fruit) = {
 item = 3, “apple”;
 item = 4, “orange”;
 item = 5, “cherry”;
 item = 6, “banana”;
 default_item = “Unknown”;
};

A get_item() call can be used in an Condition when configuring a Data Box
(see “Data Box” on page 10-18):

Condition arg1 = get_item(fruit,"cherry")
11-102

Using Expressions
requiring the first argument of the associated trace event to be the same as the index
value matching the entry for cherry in the fruit string table (which, in our
example, is 5).

RETURN TYPES

On successful completion, get_item() returns an item number from a string
table. If several item lines within the string table have the same string value as
str_const, get_item() returns the first item number from one of these item lines.
If table_name is not found, NightTrace issues an error message, and the results are
undefined. If str_const is not found and there is no default item line, the results are
undefined. Because get_item() returns an integer, you can use it anywhere an
integer expression can be used.

For more information on string tables, see “String Tables” on page 6-16.
11-103

NightTrace RT User’s Guide
get_format() 11

The get_format() routine dynamically looks up a string in a format table.

SYNTAX

get_format (table_name[, int_expr])

PARAMETERS

table_name table_name is an unquoted character string that represents the
name of a format table. To avoid possible forward reference
problems, try to make your get_format() calls refer to pre-
viously-defined format tables.

int_expr int_expr is an integer expression that acts as an index into the
specified format table. int_expr must either match an identify-
ing integer value in the table_name format table, or the
table_name format table must have a default item line; other-
wise, the results are undefined. Often int_expr is based on a
NightTrace function.

If your table consists of only a default item line, omit this
parameter.

DESCRIPTION

A call to get_format() must be the first function call in an expression. You
must not nest calls to get_format().

The Output Text field of a Data Box configuration can call get_format() to
dynamically locate a string in a format table. For each get_format() call, Night-
Trace follows these steps:

1. Evaluates int_expr

2. Uses this value as an index into table_name

3. Retrieves the associated string from table_name

4. Replaces any conversion specifications in the associated string

5. Returns a string

Assume that the following format table definition is in your configuration file.

format_table (what_pid) = {
 item = 1, “Trace event 1 logged by pid %d’%d”, “raw_pid()”,

 “lwpid()”;
 default_item = “Unaccounted for event ID (%d)”, “id()”;
};

Assume that you make the following call in the Then-Expression of a Data Box.

get_format (what_pid, id())
11-104

Using Expressions
In this example, the what_pid format table associates one dynamically-generated
string with trace event ID 1 (id() == 1) and another string with all other trace
events (default_item). When NightTrace processes a trace event for the display
object with the above get_format(), it:

1. Evaluates the NightTrace id() function. (Assume it evaluates to 1)

2. Calls get_format()

3. Uses this value (1) as an index into the what_pid format table

4. Retrieves the associated string (“Trace event 1 logged by
pid %d’%d”) from the what_pid format table

5. Evaluates the NightTrace raw_pid() and lwpid() functions.
(Assume they evaluate to 213 and 1 respectively)

6. Replaces the %d conversion specifiers with the raw_pid() and
lwpid() values

7. Displays “Trace event 1 logged by pid 213’1”

RETURN TYPES

On successful completion, get_format() returns a format table string. Other-
wise, it returns an empty string.

For more information on format tables, see “Format Tables” on page 6-20.
11-105

NightTrace RT User’s Guide
format() 11

The format() routine displays a string.

SYNTAX

format (“format_string” [, arg] ...)

PARAMETERS

format_string format_string controls how the optional args are displayed.
format_string is based on the format parameter used in the
printf(3) routine in C. It is a character string enclosed in
double quotes that contains literal characters and conversion
specifications. The literals are copied as is to the display
object. Conversion specifications modify zero or more args.

arg arg is an optional expression to be formatted and displayed.

DESCRIPTION

Call the format() function to display a string. You can do this only from the Out-
put Text field of a Data Box. A call to format() must be the first function call
in an expression. You must not nest calls to format().

The following lines provide examples of format() statements and what they dis-
play. Assume all variables have a value of 10 (decimal).

RETURN TYPES

On successful completion, format() returns a string. Otherwise, it returns an
empty string.

 format("Error”) Error

 format("Event=%d”, id()) Event=10

 format("Argument is %X”, arg1()) Argument is A
11-106

Using Expressions
Profile References 11

Profile references provide a means for referencing a set of one or more trace events which
may be restricted by conditions specified by the user.

Profile references can be used within trace event functions (see “Trace Event Functions”
on page 11-13).

A profile reference is simply the name of the profile.

Profiles are created and managed using the Profiles dialog (see “Profiles” on page 8-1for
more information).
11-107

NightTrace RT User’s Guide
11-108

12
Chapter 12Kernel Tracing

12
12
12

This chapter provides an introduction to kernel tracing. It also discusses the steps required
to produce a highly detailed picture of kernel activity with NightTrace. You can customize
the default NightTrace kernel display pages or combine kernel information with
user-application trace information.

NightTrace operates with the all flavors of the RedHawk kernel; standard, tracing, and
debug. However, in order to use kernel tracing, you must select the tracing or debug ker-
nel at boot time from the boot-loader menu.

N i g h t Tr ac e t r a n s f o r m s t h e r a w k e r n e l e v e n t s a s d e f i n e d i n
/usr/include/linux/tracer.h to NightTrace events. The raw kernel event num-
bers are biased by the value 4300 to form the NightTrace event ID number. Normally, the
arguments logged with the raw kernel events are directly converted to integer-sized Night-
Trace arguments. There are some exceptions which are noted in this chapter.

Primary Kernel Trace Events 12

The following kernel trace events are of primary interest:

• SCHEDCHANGE

• SYSCALL_ENTRY,SYSCALL_EXIT, SYSCALL_SUSPEND,
and SYSCALL_RESUME

• IRQ_ENTRY, IRQ_EXIT, SOFT_IRQ_ENTRY,
and SOFT_IRQ_EXIT

• TRAP_ENTRY, TRAP_EXIT, TRAP_SUSPEND, and TRAP_RESUME

• PROCESS, NETWORK, and MEMORY

These trace events and several others are enabled by default when starting a kernel trace
daemon. You can change the default enabled event set in ntrace in the Events tab of
the Daemon Definition dialog or using -enable command line option to ntracekd.

The following sections discuss the primary trace events.

Context Switch Trace Event 12

There is only one context switch trace event:
12-1

NightTrace RT User’s Guide
SCHEDCHANGE arg1

This trace event is logged whenever a process has been switched in and is ready to
be run on a specific CPU. Because only one process can run on a given CPU at a
time, this trace event also signifies that the process that was running on the CPU
immediately prior to the context switch trace event has been switched out and can
no longer run. This trace event has one argument:

arg1 The process identifier (PID) of the process being switched in. This
information is somewhat redundant, since it is identical to the PID
that is already associated with the trace event. A PID of 0 indicates
that the CPU is idle.

This identifier is identical to the return value of the gettid(2)
system call. See “pid()” on page 11-20.

NOTE:

The SCHEDCHANGE event argument differs from the argument
logged with the corresponding raw kernel event as described in
/usr/include/linux/tracer.h.

Interrupt Trace Events 12

There are two trace events associated with machine interrupts:

IRQ_ENTRY arg1 arg2 arg3

This trace event is logged whenever an interrupt occurs. It has three arguments:

arg1 Reserved for future use

arg2 The interrupt nesting level used by the pre-defined kernel pages to
graph the different heights associated with the nesting level. This
argument will be 1 for the first interrupt, 2 for a second interrupt that
interrupted the first interrupt, 3 for a third interrupt that interrupted
the second interrupt, etc.

arg3 The interrupt vector number that indicates the type of interrupt. This
is an index into the vector string table that is contained within the
vectors file generated by NightTrace when consuming kernel data.
For more information about the vector string table, see “Kernel
String Tables” on page 12-14.

IRQ_EXIT arg1 arg2 arg3

This trace event is logged whenever an interrupt is exited. Its arguments are identi-
cal to those of the IRQ_ENTRY trace event.
12-2

Kernel Tracing
NOTE:

The IRQ_ENTRY and IRQ_EXIT event arguments differ from
t h e i r r a w k e r n e l c o u n t e r p a r t s a s d e s c r i b e d i n
/usr/include/linux/tracer.h.

Additional exception processing is done on behalf of the kernel by kernel daemons
that run as user-level processes. Such exception processing is identified by the fol-
lowing two events:

SOFT_IRQ_ENTRY arg1 arg2
SOFT_IRQ_EXIT

These event pairs surround soft interrupt processing and are usually associated with
a ksoftirq daemon process.

The arguments logged with SOFT_IRQ_ENTRY are internal kernel parameters
which are explained in /usr/include/linux/tracer.h.

Exception Trace Events 12

There are four trace events associated with exceptions:

TRAP_ENTRY arg1 arg2 arg3

This trace event is logged whenever a machine exception occurs. It has three argu-
ments:

arg1 This argument contains the value of the exception vector number
that indicates the type of exception. This is an index into the vector
string table that is contained within the vectors file. For more infor-
mation about the vector string table, see “Kernel String Tables” on
page 12-14.

arg2 This argument contains the value of the program counter where the
exception occurred.

arg3 This argument contains the value of the faulting address, for those
exception types which involved virtual memory faults.

TRAP_EXIT arg1

This trace event is logged whenever exception processing is completed. It has one
argument that is identical to the first argument that is logged with the TRAP_ENTRY
trace event.

TRAP_SUSPEND arg1
TRAP_RESUME arg1

These trace events are logged when exception processing is suspended before it is
completed, and subsequently resumed. A TRACE_SUSPEND event will be followed
immediately by a SCHEDCHANGE event which signifies a context switch to another
12-3

NightTrace RT User’s Guide
process while the process that caused the exception is blocked pending exception
processing completion. The single argument logged for both events is the exception
vector number associated with the originating TRAP_ENTRY event.

Syscall Trace Events 12

There are four trace events associated with system calls:

SYSCALL_ENTRY arg1 arg2 arg3

This trace event is logged whenever a system call is entered. It has three arguments:

arg1 This argument is the value of the program counter from which the
system call was made. Depending on the system type, this value may
not be particularly useful as many system calls occur from the same
page in virtual memory, commonly referred to as the fast system call
page.

arg2 This argument is the value of the system call number that identifies
the system call. This is an index into the pre-defined syscall string
table.

arg3 This argument is the value of the device number that indicates the
type of device that is associated with the system call, if any. This is
an index into the pre-defined device string table.

For more information about the pre-defined syscall and device string tables,
see “Kernel String Tables” on page 12-14.

SYSCALL_EXIT arg1 arg2 arg3

This trace event is logged whenever a system call is completed. It has three argu-
ments; the second and third arguments are identical to the second and third argu-
ments logged with the originating SYSCALL_ENTRY trace event. The first argu-
ment is the value returned by the system call.

NOTE:

The return value of the system call is only available on RedHawk
version 2.3 and beyond. On previous versions, the value will be
zero, regardless of the success or failure of the system call.

SYSCALL_SUSPEND arg1 arg2 arg3
SYSCALL_RESUME arg1 arg2 arg3

These trace events are logged when system call processing is suspended before it is
completed, and subsequently resumed. A SYSCALL_SUSPEND event will be fol-
lowed immediately by a SCHEDCHANGE event which signifies a context switch to
another process while the process that executed the system call is blocked pending
system call processing completion. The arguments logged for both events are identi-
cal to the arguments associated with the originating SYSCALL_ENTRY event.
12-4

Kernel Tracing
NOTE:

The SYSCALL_ENTRY and SYSCALL_EXIT event arguments
differ from their raw kernel counterparts as described in
/usr/include/linux/tracer.h.

Kernel Work Events 12

Kernel work events occur during system calls, exceptions, and interrupt processing. They
include the following events:

PROCESS arg1 arg2 arg3

The PROCESS event represents process creation, exit, and signalling events. The
following arguments provide detail:

arg1 This argument is an event code specific to PROCESS events as
defined by /usr/include/linux/tracer.h. The codes and
their meanings are described in the Table 12-1:

arg2 The meaning of this argument is dependent on the value of arg1.
Normally, this argument is the process ID of the process associated
with the event. However, when a signal is sent, this argument is the
signal number.

arg3 The meaning of this argument is dependent on the value of arg1.
Normally, this argument is the value of an internal kernel function
pointer. However, when a signal is sent, this argument is the process
ID of the process being signalled.

NETWORK

This event is logged to indicate networking activity.

Table 12-1. PROCESS Event Codes

Code Meaning

1 Kernel thread creation

2 Process creation (fork or
clone)

3 Process exit

4 Process wait

5 Process signal

6 Process wake-up
12-5

NightTrace RT User’s Guide
arg1 This argument is an event code specific to NETWORK events
as defined by /usr/include/linux/tracer.h. The codes and
their meanings are described in Table 12-2:

arg2 This argument is an internal kernel data value associated with the event.

MEMORY

This event is logged to indicate a variety of virtual memory events.

arg1 This argument is an event code specific to MEMORY events
as defined by /usr/include/linux/tracer.h. The codes and
their meanings are described in Table 12-3:

arg2 This argument is an internal kernel data value associated with the
event.

Additional Kernel Events 12

There are many more kernel events that occur other than those described in the sections
a b o v e . T h e y a r e d e f i n e d b y t h e e n u m e r a t e d t y p e event_id i n t h e
/usr/include/linux/tracer.h header file. Not all events defined in that file are
enabled by default.

For many kernel events, a corresponding structure is defined. The content of the structure
contains additional detail describing the event. The structure is unpacked into individual

Table 12-2. NETWORK Kernel Event Sub-ID Codes

Code Meaning

1 A packet was received

2 A packet was sent

Table 12-3. MEMORY Kernel Event Sub-ID Codes

Code Meaning

1 Allocating pages

2 Freeing pages

3 Swapping in pages

4 Swapping out pages

5 Start to wait for page

6 End waiting for page
12-6

Kernel Tracing
arguments which are logged with the event. As many integer arguments are logged as
required to cover the size of the structure.

For example, an IPC kernel event includes data in the following structure, as defined by
/usr/include/linux/tracer.h:

/* TRACE_EV_IPC */
typedef struct {

unsigned int event_sub_id;
unsigned int event_data1;
unsigned int event_data2;

} trace_ipc;

The following arguments are logged with an IPC event:

arg1 This first word of the structure -- event_sub_id

arg2 The second word of the structure -- event_data1

arg2 The third word of the structure -- event_data2

The kernel includes a CUSTOM event which can contain dynamically-sized data. This
flexible unpacking scheme allows new dynamically-sized events to be created and logged
effectively by NightTrace.
12-7

NightTrace RT User’s Guide
Logging Custom Kernel Events 12

User programs can log CUSTOM kernel trace events with ioctl calls.

The following structure is defined in /usr/include/ntrace.h:

typedef struct {
unsigned int id; // Custom event ID
unsigned int data_size; // Size of optional data
void * data; // Optional data

} nt_trace_custom;

The following code fragment provides an example of how to log a custom kernel event
from a user application:

#include <ntrace.h>
#include <fcntl.h>
log_event (int id)
{ int fd;
 int err;
 int data[4] = {1, 2, 3, 4};
 nt_trace_custom event;
 event.id = id;
 event.data_size = sizeof(data);
 event.data = data;
 fd = open (“/dev/tracer”, O_RDWR, 0);
 err = ioctl(fd,NT_TRACER_LOG_CUSTOM_EVENT,&event)==-1;
 close(fd);
};

The CUSTOM event is not enabled by default in kernel trace daemons. You can change the
default enabled event set in ntrace in the Events tab of the Daemon Definition dia-
log or using the -enable command line option to ntracekd, e.g:

ntracekd --size=20M --events=+CUSTOM data-file

Viewing Kernel Trace Event Files 12

NightTrace automatically builds kernel display pages when ntrace is invoked with ker-
nel data (see “Kernel Display Pages” on page 12-9). The number of CPUs is detected
from the kernel trace data and controls how the page is built.

In addition, you may customize a kernel display page using the Build Custom Kernel
Page dialog (see “Build Custom Kernel Page” on page 7-25) which is accessed by select-
ing the Custom Kernel Page... menu item from the Pages menu on the NightTrace
Main Window (see “Custom Kernel Page...” on page 7-24).
12-8

Kernel Tracing
Kernel Display Pages 12

Figure 12-1 shows a sample kernel display page for a dual CPU system.

Figure 12-1. Sample Kernel Display Page

For each CPU, several rows of information are displayed. The position of the current time
line determines the values that appear on the kernel display pages. Moving the current
time line within the current interval does not change the graphical displays. However, the
textual displays always reflect the last values prior to or at the current time line.

The following sections discuss all of the different pieces of information in detail

Node and CPU Information 12

Figure 12-2 shows the Grid Label (see “Grid Label” on page 10-4) that appears on kernel
display pages which displays information about the node and CPU corresponding to the
trace data being displayed.

Figure 12-2. Node and CPU Box

The node identifies the node from which the displayed data was obtained.
12-9

NightTrace RT User’s Guide
The CPU identifies the logical CPU to which the displayed data corresponds. Logical
CPU numbers are related to, but not necessarily identical to, physical CPU numbers.

The cpu(1) command displays the relationship of physical CPU numbers to logical
CPU numbers, but since most all interfaces use logical CPU numbers, it is not normally of
significant interest.

Context Switch Information 12

Figure 12-3. Context Switch Lines

Figure 12-3 shows an example of several context switch lines. Context switch lines are
superimposed on the exception and system call graphs. They indicate that the kernel has
switched out the process that was previously running on the CPU and switched in a new
process. There is a direct correlation between context switch lines and the Process Infor-
mation box: the Process Information box shows the process associated with the context
switch line that immediately precedes the current time line.

Interrupt Information 12

Figure 12-4. Interrupt Box and Interrupt Graph

Figure 12-4 shows an interrupt box and an interrupt graph. The interrupt graph displays a
state that is drawn whenever an interrupt is executing on the associated CPU. Interrupts
can be interrupted while executing, and the interrupt graph shows this interrupt nesting by
increasing the height of the state bar. Although interrupts can nest, all interrupts must
complete before the process they interrupt can be switched out. Therefore, you will never
see a context switch occur in the middle of an interrupt.

The interrupt box displays the name of the last interrupt prior to or immediately at the cur-
rent time line that executed (and may still be executing) on the associated CPU. It can be
used with the interrupt graph to identify any interrupts that are currently visible on the
graph. Simply move the current time line onto a graphed interrupt, and the interrupt box
will update to display the name of the interrupt.

Because the interrupt box displays the name of the last interrupt that executed, it is possi-
ble for there to be no interrupts visible on the interrupt graph even though the interrupt box
contains a valid interrupt name. This signifies that the last interrupt on the CPU ended
prior to the beginning of the current interval.
12-10

Kernel Tracing
An interrupt that is seen very often is the timer interrupt, usually once every 10 millisec-
onds. The interrupt box is a Data Box (“Data Box” on page 10-5) and the interrupt graph is
a Data Graph (“Data Graph” on page 10-8). See “Configuring Display Objects” on page
10-15 for more information on configuring Data Boxes and Data Graphs.

Exception Information 12

Figure 12-5. Exception Box and Exception Graph

Figure 12-5 shows a exception box and an exception graph. The exception graph displays
a state that is drawn whenever an exception is executing on the associated CPU. Unlike
interrupts, exceptions cannot nest, so they are always graphed with the same height.

Context switch lines are superimposed on exception graphs. It is common to see a context
switch line at what looks like the very end (or beginning) of an exception. Usually, this
does not indicate that the exception has ended, only that it has been suspended because the
process that originated the exception has switched out. The exception resumes when the
process is switched back in again. An example of an exception being suspended and
resumed can be seen at the left end of the exception graph in Figure 12-5.

The exception box displays the last exception prior to or at the current time line that
executed (and may still be executing) on the associated CPU. It can be used with the
exception graph to identify any exceptions that are currently visible on the graph. Simply
move the current time line onto a graphed exception, and the exception box will update to
display the name of the exception.

Because the exception box displays the name of the last exception that executed, it is pos-
sible for there to be no exceptions visible on the exception graph even though the excep-
tion box contains a valid exception name. This signifies that the last exception on the CPU
ended prior to the beginning of the current interval.

The exception box is a Data Box (“Data Box” on page 10-5) and the last exception graph
is a State Graph (see “State Graph” on page 10-7). See “Configuring Display Objects” on
page 10-15 for more information on creating and configuring Data Boxes and State
Graphs.

System call Information 12

Figure 12-6. System Call Box and System call Graph
12-11

NightTrace RT User’s Guide
Figure 12-6 shows a system call box and a system call graph. The system call graph dis-
plays a state that is drawn whenever a system call is executing on the associated CPU.
Unlike interrupts, system calls cannot nest, so they are always graphed with the same
height.

Context switch lines are superimposed on system call graphs. It is common to see a con-
text switch line at what looks like the very end (or beginning) of a system call. Usually,
this does not indicate that the system call has ended, only that it has been suspended
because the process that originated the system call has switched out. The system call
resumes when the process is switched back in again. An example of a system call being
suspended and resumed can be seen at the right end of the system call graph in
Figure 12-6.

The system call box displays the last system call prior to or at the current time line that
executed (and may still be executing) on the associated CPU. If the system call is associ-
ated with a device, the name of the device is shown after the name of the system call.

The system call box can be used with the system call graph to identify any system calls
that are currently visible on the graph. Simply move the current time line onto a graphed
system call, and the system call box will update to display the name of the system call.

Because the system call box displays the name of the last system call that executed, it is
possible for there to be no system calls visible on the system call graph even though the
system call box contains a valid system call name. This signifies that the last system call
on the CPU ended prior to the beginning of the current interval.

It is possible for the first system call logged by a process since kernel tracing began to be
unknown. This can occur if the process is switched in and immediately resumes a system
call that was previously suspended. If this occurs, the system call box will display “can’t
determine” for the name of the system call.

The system call box is a Data Box (see “Data Box” on page 10-5), and the last system call
graph is a State Graph (see “State Graph” on page 10-7). See “Configuring Display
Objects” on page 10-15 for more information on configuring Data Boxes and State
Graphs.

Process Information 12

Figure 12-7. Process Information Row

Figure 12-7 shows the Process Information row which includes a process data box (see
“Data Box” on page 10-5) and a process state graph (see “State Graph” on page 10-7). See
“Configuring Display Objects” on page 10-15 for more information on creating and con-
figuring Data Boxes and State Graphs.

The data box indicates the name of the process (other than /idle) that last executed on
the CPU prior to or at the current timeline.
12-12

Kernel Tracing
The state graph uses multi-colored states to indicate when a process other than /idle is
executing on a CPU. The colors are assigned by NightTrace using a heuristic that takes
into account all processes represented by the data set. You cannot predict which color will
be associated with a specific process, but once the color is assigned, it remains constant
throughout the current NightTrace session.

Kernel Events 12

Figure 12-8. Kernel Events Row

Figure 12-8 shows the Kernel Events row which includes a kernel event data box (see
“Data Box” on page 10-5) and a kernel event graph (see “Event Graph” on page 10-6).
See “Configuring Display Objects” on page 10-15 for more information on creating and
configuring Data Boxes and Event Graphs.

The data box indicates the name of the last kernel event logged for that CPU prior to or at
the current timeline.

The event graph shows a vertical line for every kernel event.

Color Information 12

Figure 12-9. Color Key

Figure 12-9 shows the color key that is located on the bottom left of the grid on the
pre-defined kernel display pages.

The text in the color key is color-coded. By default, the word “Interrupt” is red, and all
display objects on the kernel display page that display information about interrupts are
also red. By default, the word “Exception” is green, and all display objects that display
information about exceptions are also green. By default, the word “Syscall” is blue, and
all display objects that display information about system calls are also blue. By default,
the word “KernelEvent” is dark red, and all display objects that display kernel events in
that row are dark red.

The default colors of the different groups of kernel objects can be controlled with X
resources. The colors are specified on a per-CPU basis. The default resources for logical
CPU 0 are:
12-13

NightTrace RT User’s Guide
Ntrace*Color*GridObject*interrupt0*foreground: red
Ntrace*Color*GridObject*exception0*foreground: green
Ntrace*Color*GridObject*syscall0*foreground: blue
Ntrace*Color*GridObject*allkernel0*foreground: darkred

Kernel String Tables 12

There are nine kernel related pre-defined string tables. They are:

vector This string table contains the interrupt and exception vector names
associated with the system that the kernel tracing was performed on.
It is contained in the vectors file.

This table is indexed by an exception/interrupt vector number or an
exception/interrupt vector name. Examples of using this table are:

get_string(vector, arg3())
get_string(vector, 15)
get_item(vector, “ide0”)

syscall This string table contains the names of all the possible system calls
that can occur on the system. It is contained in the vectors file.

This table is indexed by a system call number or a system call name.
Examples of using this table are:

get_string(syscall, 44)
get_string(syscall, arg2())
get_item(syscall, “fork”)

device This string table contains the names the devices that are currently
configured in the kernel. It is contained in the vectors file.

This table is indexed by a device number or a device name. Exam-
ples of using this table are:

get_string(device, arg3())
get_string(device, 720900)
get_item(device, “gd”)

name_pid This string table contains the name of each node's process ID table.
It is dynamically built as the trace event files are processed upon ini-
tialization.

node_name This string table contains the names of all nodes that have a trace
event file associated with them. It is dynamically built as the trace
event files are processed upon initialization.

pid_nodename This string table contains the names associated with all process iden-
tifiers found in trace event files for node name nodename. It is
dynamically built as the trace event files are processed upon initial-
ization. It is contained in the vectors file. Because process identifiers
are not guaranteed to be unique across nodes, using the predefined
12-14

Kernel Tracing
string table pid to get the process name for a process ID may result
in an incorrect name being returned from the table. Using the node
process ID tables ensures that the correct process name is returned
for a process ID unless the process name is not unique on that partic-
ular node.

These tables are indexed by a process identifier or a process name.
Examples of using these tables are:

get_string(pid_hal, pid())
get_item(pid_simulator, “odyssey”)

syscall_nodenameThis string table contains the names of all possible system calls that
can occur in trace event files for node name nodename. It is con-
tained in the vectors file.

This table is indexed by a system call number or a system call name.
Examples of using this table are:

get_string(syscall_systemx, 31)
get_string(syscall_systemy, arg2())
get_item(syscall_systemz, “read”)

vector_nodename This string table contains the interrupt and exception vector names
associated with trace event files for node name nodename. It is con-
tained in the vectors file.

This table is indexed by an exception/interrupt vector number or an
exception/interrupt vector name. Examples of using this table are:

get_string(vector_machine1, arg3())
get_string(vector_machine2, 585)
get_item(vector_system3, “data access”)

device_nodename This string table contains the names of devices configured in the ker-
nel for trace event files from node name nodename. It is contained in
the vectors file.

This table is indexed by a device number or a device name. Exam-
ples of using this table are:

get_string(device_simulator1, arg3())
get_string(device_simulator4, 3604484)
get_item(device_controller, “rtc”)

The pid string table is also used by the kernel display pages. For more information on the
pid string table, see “Pre-Defined Strings Tables” on page 6-17.
12-15

NightTrace RT User’s Guide
12-16

Programmatic Analysis
Part III - Programmatic Analysis

Part III Programmatic Analysis

Chapter 13 Using the NightTrace Analysis API.. 13-1

NightTrace RT User’s Guide

13
Chapter 13Using the NightTrace Analysis API

13
13
13

The NightTrace graphical user interface is one of the primary tools for analyzing trace
data (see Chapter 7, “The NightTrace Main Window”). However, the NightTrace Analy-
sis Application Programming Interface provides users with even further control in sum-
marizing or monitoring trace data.

The NightTrace Analysis API provides a basic interface to the data produced by Night-
Trace allowing users to process NightTrace data programmatically. It allows users to cus-
tomize their analysis of NightTrace data, both expressly via user-written programs and as
customized batch summaries.

For instance, a user may want to provide customized reports on user application or kernel
activity, monitor a user application or the operating system itself and take action when a
specific situation occurs, or filter a trace data file (to significantly reduce its size) for sub-
sequent use with the GUI or API.

The NightTrace Analysis API can use either NightTrace data files generated by Night-
Trace kernel or user daemons or may reference a file descriptor connected to a streaming
daemon as the input source.

The API allows the user to control the order in which the data is accessed and provides for
event filtration as well as customized event and state definition specification using condi-
tions currently provided in the NightTrace GUI tool.

In addition, all functions supported by the NightTrace GUI expression language are pro-
vided as user-callable functions.

The following sections describe the data structures and functions that comprise the Night-
Trace Analysis API.

Sample programs using these data structures and functions are also provided (see Night-
Trace Analysis API Examples).

NightTrace Analysis Application Programming Interface 13

The NightTrace Analysis Application Programming Interface consists of a number of data
structures (see “Data Structures” on page 13-3) and functions (see “Functions” on page
13-9).

These data structures and functions are accessible via the C header file:

/usr/include/ntrace_analysis.h

and the C library:

/usr/lib/libntrace_analysis.a
13-1

NightTrace RT User’s Guide
and can be called by C and C++ programs.
13-2

Using the NightTrace Analysis API
Data Structures 13

The following data structures are part of the NightTrace Analysis Application Program-
ming Interface:

- tr_cb_t (see page 13-3)

- tr_cond_cb_func_t (see page 13-4)

- tr_cond_func_t (see page 13-4)

- tr_cond_t (see page 13-5)

- tr_dir_t (see page 13-5)

- tr_offset_t (see page 13-5)

- tr_state_action_t (see page 13-6)

- tr_state_info_t (see page 13-7)

- tr_state_t (see page 13-7)

- tr_stream_event_t (see page 13-8)

- tr_string_node_t (see page 13-8)

- tr_t (see page 13-8)

See “Functions” on page 13-9 for information about the functions available in the Night-
Trace Analysis API.

tr_cb_t 13

tr_cb_t is an opaque handle that identies a particular callback. It is defined as:

typedef int tr_cb_t;

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.
13-3

NightTrace RT User’s Guide
tr_cond_cb_func_t 13

tr_cond_cb_func_t is defined as:

typedef void (*tr_cond_cb_func_t) (tr_t t,
 tr_cond_t c,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable);

PARAMETERS

t data set handle

c handle of the condition associated with this call

offset offset of the trace event satisfying the condition

occurrence number of times the condition has been satisfied thus far

context user-defined field specified when the callback is defined

disable pointer to an integer; if the user sets the integer to a non-zero
value, the registration of this function for the specified condi-
tion will be disabled for the remainder of the iteration pass

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_offset_t” on page 13-5

tr_cond_func_t 13

tr_cond_func_t is defined as:

typedef int (*tr_cond_func_t) (tr_t t,
 tr_offset_t event_offset,
 void *context);

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.
13-4

Using the NightTrace Analysis API
tr_cond_t 13

tr_cond_t is an opaque handle used to identify a particular condition. It is defined as:

typedef long tr_cond_t;

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.

tr_dir_t 13

tr_dir_t is defined as:

typedef enum {tr_forward, tr_backward} tr_dir_t;

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.

tr_offset_t 13

tr_offset_t is defined as:

typedef int tr_offset_t;

Values of type tr_offset_t represent the offset (aka position) of a trace event within
the data set. Event offsets are assigned as monotonically increasing integers, starting with
zero as the offset of the first event in the data set.

Functions which return tr_offset_t may return TR_EOF, which indicates exceeding
past either the beginning or end of the data set, respectively.

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.
13-5

NightTrace RT User’s Guide
tr_state_action_t 13

tr_state_action_t is an enumerated type which is used to specify when a certain
function will be called. It is defined as:

typedef enum { tr_state_start_action,
 tr_state_end_action,
 tr_state_active_action,
 tr_state_inactive_action }
 tr_state_action_t;

where:

tr_state_start_action

called for every event which starts the state

tr_state_end_action

called for every event which ends an active state

tr_state_active_action

called for every event for which the state is active

tr_state_inactive_action

called for every event for which the state is inactive

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.

tr_state_cb_func_t 13

tr_state_cb_func_t is defined as:

typedef void (*tr_state_cb_func_t) (tr_t t,
 tr_state_t state,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable);

PARAMETERS

t data set handle

state handle of the state associated with this call

offset offset of the trace event satisfying the condition

occurrence number of times the condition has been satisfied thus far
13-6

Using the NightTrace Analysis API
context user-defined field specified when the callback is defined

disable pointer to an integer; if the user sets the integer to a non-zero
value, the registration of this function for the specified state
will be disabled for the remainder of the iteration pass

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.

tr_state_info_t 13

tr_state_info_t is defined as:

typedef struct {
 tr_offset_t start_offset;
 tr_offset_t end_offset;
 double gap;
 double duration;
 int count;
} tr_state_info_t;

where:

start_offset offset of the event that started the specified state

end_offset offset of the event that ended the specified state

gap time in seconds between the beginning of the last instance of
the specified state and the end of the previous instance (or zero
if no previous instance exists)

duration time in seconds during which the specified state was active

count number of completed instances of the specified state

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.

tr_state_t 13

tr_state_t is an opaque handle used to identify a particular state. It is defined as:

typedef long tr_state_t;

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.
13-7

NightTrace RT User’s Guide
tr_stream_event_t 13

tr_stream_event_t is defined as:

typedef enum { tr_stream_overflow,
 tr_stream_stall } tr_stream_event_t;

NOTE

The tr_stream_overflow event has been deprecated and no
longer occurs.

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.

tr_stream_func_t 13

tr_stream_func_t is defined as:

typedef void (*tr_stream_func_t) (tr_t t,
 tr_stream_event_t event);

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.

tr_string_node_t 13

tr_string_node_t is defined as:

typedef struct {
 int item;
 char * value;
} tr_string_node_t;

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.

tr_t 13

tr_t is an opaque handle used to identify a particular data set. It is defined as:

typedef long tr_t;

See “Data Structures” on page 13-3 for other data structures included in the NightTrace
Analysis API.
13-8

Using the NightTrace Analysis API
Functions 13

The functions that comprise the NightTrace Analysis Application Programming Interface
are broken down into the following categories:

• API Initialization and Destruction (see page 13-13)

• Error Detection, Collection, and Reporting (see page 13-15)

• Input Specification and Streaming Control (see page 13-17)

• Event Offset Positioning (see page 13-24)

• Basic Event Attribute Functions (see page 13-29)

• Conditions (see page 13-49)

• State-oriented Interfaces (see page 13-79)

• Output Function (see page 13-94)

• String Table Functions (see page 13-95)

• Callback Interfaces (see page 13-99)

The following is a complete list of functions included in the NightTrace Analysis API:

tr_activate() page 13-89

tr_append_table() page 13-98

tr_arg_dbl() page 13-35

tr_arg_dbl_() page 13-36

tr_arg_int() page 13-34

tr_arg_int_() page 13-34

tr_cancel_cb() page 13-100

tr_close() page 13-19

tr_cond_and() page 13-73

tr_cond_cb() page 13-101

tr_cond_copy() page 13-74

tr_cond_cpu() page 13-55

tr_cond_cpu_clear() page 13-55

tr_cond_create() page 13-50

tr_cond_expr_and() page 13-69

tr_cond_expr_or() page 13-70

tr_cond_find() page 13-51

tr_cond_func_and() page 13-66
13-9

NightTrace RT User’s Guide
tr_cond_func_clear() page 13-68

tr_cond_func_or() page 13-64

tr_cond_id() page 13-52

tr_cond_id_clear() page 13-54

tr_cond_id_range() page 13-53

tr_cond_name() page 13-75

tr_cond_node() page 13-62

tr_cond_node_clear() page 13-63

tr_cond_not() page 13-71

tr_cond_offset() page 13-78

tr_cond_or() page 13-72

tr_cond_pid() page 13-56

tr_cond_pid_clear() page 13-58

tr_cond_pid_name() page 13-57

tr_cond_register() page 13-77

tr_cond_reset() page 13-51

tr_cond_satisfy() page 13-75

tr_cond_satisfy_() page 13-76

tr_cond_tid() page 13-59

tr_cond_tid_clear() page 13-61

tr_cond_tid_name() page 13-60

tr_copy_input() page 13-94

tr_cpu() page 13-41

tr_cpu_() page 13-42

tr_create_table() page 13-97

tr_destroy() page 13-13

tr_error_check() page 13-16

tr_error_clear() page 13-15

tr_free() page 13-23

tr_get_item() page 13-96

tr_get_string() page 13-95

tr_halt() page 13-100

tr_id() page 13-30

tr_id_() page 13-30

tr_init() page 13-13

tr_iterate() page 13-99
13-10

Using the NightTrace Analysis API
tr_nargs() page 13-32

tr_nargs_() page 13-33

tr_next_event() page 13-24

tr_next_event_() page 13-25

tr_node() page 13-43

tr_node_() page 13-44

tr_open_file() page 13-17

tr_open_stream() page 13-18

tr_pid() page 13-36

tr_pid_() page 13-37

tr_prev_event() page 13-25

tr_prev_event_() page 13-26

tr_process_name() page 13-44

tr_process_name_() page 13-45

tr_search() page 13-27

tr_seek() page 13-28

tr_state_active() page 13-92

tr_state_active_() page 13-93

tr_state_cb() page 13-102

tr_state_create() page 13-80

tr_state_end_cond() page 13-88

tr_state_end_cond_clear() page 13-88

tr_state_end_id() page 13-84

tr_state_end_id_clear() page 13-86

tr_state_end_id_range() page 13-85

tr_state_find() page 13-81

tr_state_info() page 13-90

tr_state_info_() page 13-91

tr_state_name() page 13-81

tr_state_start_cond() page 13-86

tr_state_start_cond_clear() page 13-87

tr_state_start_id() page 13-82

tr_state_start_id_clear() page 13-84

tr_state_start_id_range() page 13-83

tr_stream_notify() page 13-20

tr_stream_read() page 13-21
13-11

NightTrace RT User’s Guide
tr_stream_size() page 13-22

tr_task_id() page 13-40

tr_task_id_() page 13-41

tr_task_name() page 13-46

tr_task_name_() page 13-46

tr_thread_id() page 13-39

tr_thread_id_() page 13-39

tr_thread_name() page 13-47

tr_thread_name_() page 13-47

tr_tid() page 13-38

tr_tid_() page 13-38

tr_time() page 13-31

tr_time_() page 13-32
13-12

Using the NightTrace Analysis API
API Initialization and Destruction 13

The functions related to API initialization and destruction are:

- tr_init() (see page 13-13)

- tr_destroy() (see page 13-13)

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

tr_init() 13

tr_init() returns an opaque handle that is required for all subsequent API functions
and which identifies the data set.

SYNTAX

extern tr_t tr_init (void);

RETURN VALUES

Returns an opaque handle that is required for all subsequent API functions and
which identifies the data set; in the event there is insufficient memory,
TR_NO_HANDLE will be returned.

See “API Initialization and Destruction” on page 13-13 for related functions. See “Func-
tions” on page 13-9 for a complete list of functions included in the NightTrace Analysis
API.

SEE ALSO

• “tr_t” on page 13-8

tr_destroy() 13

tr_destroy() frees up any remaining memory associated with a handle returned by
tr_init().
13-13

NightTrace RT User’s Guide
NOTE

tr_destroy() expects a pointer to a handle, whereas all other
functions expect the handle itself.

SYNTAX

extern void tr_destroy (tr_t * t);

PARAMETERS

t data set handle

See “API Initialization and Destruction” on page 13-13 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_init()” on page 13-13
13-14

Using the NightTrace Analysis API
Error Detection, Collection, and Reporting 13

Most individual functions within the API return an indiciation of whether the requested
operation was successful. Most often, zero indicates success, and non-zero indicates fail-
ure. Exceptions to this rule are indiciated for each function.

Errors are collected by the API and can be retreived after calling a series of functions.

The functions related to error detection, collection, and reporting are:

- tr_error_clear() (see page 13-15)

- tr_error_check() (see page 13-16)

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

tr_error_clear() 13

tr_error_clear() is used to flush any collected errors and set the internal error state
to zero, meaning success.

SYNTAX

extern void tr_error_clear (tr_t t);

PARAMETERS

t data set handle

See “Error Detection, Collection, and Reporting” on page 13-15 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_error_check()” on page 13-16
13-15

NightTrace RT User’s Guide
tr_error_check() 13

tr_error_check() is used to determine the errors that have occurred since the begin-
ning of the program or since the last time the error list was cleared.

SYNTAX

extern int tr_error_check (tr_t t,
 tr_string_node_t**list);

PARAMETERS

t data set handle

list the list of errors that have occurred (since the last call to
tr_error_clear() or the beginning of the program). For
each entry in the list, value describes the error and item
refers to errno (if appropriate). (See “tr_string_node_t” on
page 13-8 for more information.)

RETURN VALUES

Returns zero if no errors have occurred (since the last call to tr_error_clear()
or the beginning of the program); otherwise, returns the number of errors in the list
of errors pointed to by list. If the user passes in a NULL value for the address of list,
list is not set.

See “Error Detection, Collection, and Reporting” on page 13-15 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_string_node_t” on page 13-8

• “tr_error_clear()” on page 13-15
13-16

Using the NightTrace Analysis API
Input Specification and Streaming Control 13

The functions related to input specification and streaming control are:

- tr_open_file() (see page 13-17)

- tr_open_stream() (see page 13-18)

- tr_close() (see page 13-19)

- tr_stream_notify() (see page 13-20)

- tr_stream_read() (see page 13-21)

- tr_stream_size() (see page 13-22)

- tr_free() (see page 13-23)

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

tr_open_file() 13

tr_open_file() opens the specified NightTrace data file and initializes the API for
operation on the contained data set.

NOTE

Currently, only one input source is allowed per handle (until it is
closed via tr_close()).

SYNTAX

extern int tr_open_file (tr_t t,
 char * filename);

PARAMETERS

t data set handle

filename the pathname of the NightTrace data file

RETURN VALUES

Returns zero on success; returns -1 if there is an error opening the data file.

See “Input Specification and Streaming Control” on page 13-17 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.
13-17

NightTrace RT User’s Guide
SEE ALSO

• “tr_t” on page 13-8

• “tr_close()” on page 13-19

tr_open_stream() 13

tr_open_stream() associates the specified file descriptor with a stream of raw trace
data. The stream is normally generated by invoking ntraceud or ntracekd with the
--stream option and piping stdout to the user application's stdin. Alternatively, the
NightTrace GUI can launch a user application providing stdin as the data stream.

NOTE

Currently, only one input source is allowed per handle (until it is
closed via tr_close()).

SYNTAX

extern int tr_open_stream (tr_t t,
 int fd,
 int unused,
 int flags);

PARAMETERS

t data set handle

fd file descriptor providing streaming raw data

unused this parameter is not used

flags may contain the following value:

TR_STREAM_SAVE - this instructs the API to retain all
streamed events in memory even after they have been con-
sumed. By default, for streaming data, once an event has been
consumed by an API call, its memory will be (eventually)
released and it cannot be referenced subsequently.

RETURN VALUES

Returns zero on success; returns -1 if there is an error opening the data stream.

See “Input Specification and Streaming Control” on page 13-17 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.
13-18

Using the NightTrace Analysis API
SEE ALSO

• “tr_t” on page 13-8

• “tr_stream_size()” on page 13-22

• “tr_close()” on page 13-19

tr_close() 13

tr_close() closes the specified data set and associated data file or stream file descrip-
tor. In the case of a data stream, if the associated daemon is still running, the daemon will
terminate with an error.

NOTE

Currently, only one input source is allowed per handle (until it is
closed via tr_close()).

SYNTAX

extern void tr_close (tr_t t);

PARAMETERS

t data set handle

See “Input Specification and Streaming Control” on page 13-17 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_open_file()” on page 13-17

• “tr_open_stream()” on page 13-18
13-19

NightTrace RT User’s Guide
tr_stream_notify() 13

tr_stream_notify() defines a callback which will occur when a stream event occurs
as defined by tr_stream_event_t.

SYNTAX

extern int tr_stream_notify (tr_t t,
 tr_stream_event_t event,
 tr_stream_func_t func);

PARAMETERS

t data set handle

event can be:

tr_stream_overflow - This event has been deprecated
and no longer occurs. See tr_stream_read() for control
over stream I/O operations.

tr_stream_stall - A stall occurs when there is an insuffi-
cient number of events available to form a segment for con-
sumption.

func callback function

RETURN VALUES

Returns zero on success; returns -1 if the specified arguments are invalid or there is
insufficient memory available to register the callback function.

See “Input Specification and Streaming Control” on page 13-17 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_stream_event_t” on page 13-8

• “tr_stream_func_t” on page 13-8

• “tr_stream_size()” on page 13-22

• “tr_stream_read()” on page 13-21
13-20

Using the NightTrace Analysis API
tr_stream_read() 13

tr_stream_read() reads events from the input stream until no events are currently
available or until the specified maximum is reached. A segmented input approach is uti-
lized so that the actual number of events read may exceed the specified maximum (by the
minimum segments size).

This function need not be called at all. The stream of data is read automatically as events
are consumed (by tr_next_event(), tr_iterate(), or tr_copy_input()).

This function is provided for situations where the rate at which events are generated
exceeds that at which they are currently being consumed. If the consumption rate is sig-
nificantly lower than the generation rate, the daemon writing the data to the stream could
otherwise stall (block on the write) and data would be lost when the daemon’s buffers fill.
Calling tr_stream_read() in such situations ensures that data is read and stored
internally for use when events are subsequently consumed by tr_next_event(),
tr_iterate(), or tr_copy_input().

SYNTAX

extern int tr_stream_read (tr_t t,
 int max_events);

PARAMETERS

t data set handle

max_events maximum number of events to be read

RETURN VALUES

Returns the number of events read.

See “Input Specification and Streaming Control” on page 13-17 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_next_event()” on page 13-24

• “tr_iterate()” on page 13-99

• “tr_copy_input()” on page 13-94
13-21

NightTrace RT User’s Guide
tr_stream_size() 13

tr_stream_size() dynamically changes the memory limit originally specified via
tr_open_stream(). It controls the amount of memory used to hold events that have
been read from the stream file descriptor but have not yet been consumed.

SYNTAX

extern int tr_stream_size (tr_t t,
 int size);

PARAMETERS

t data set handle

size memory limit associated with streaming events

RETURN VALUES

Returns zero on success; returns -1 if the specified size is invalid.

See “Input Specification and Streaming Control” on page 13-17 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_open_stream()” on page 13-18
13-22

Using the NightTrace Analysis API
tr_free() 13

tr_free() releases the memory associated with events whose offsets are less than or
equal to the specified offset, if those events have been consumed.

This function has no effect if the events have not been consumed or if events are not being
saved (e.g., tr_open_stream() called without the TR_STREAM_SAVE flag value).

SYNTAX

extern int tr_free (tr_t t,
 int event_offset);

PARAMETERS

t data set handle

event_offset specifies that the memory associated with events whose offsets
are less than or equal to this value will be released when this
function is called

RETURN VALUES

Returns zero on success; returns -1 if the specified offset is invalid.

See “Input Specification and Streaming Control” on page 13-17 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_open_stream()” on page 13-18
13-23

NightTrace RT User’s Guide
Event Offset Positioning 13

The functions related to event offset positioning are:

- tr_next_event() (see page 13-24)

- tr_next_event_() (see page 13-25)

- tr_prev_event() (see page 13-25)

- tr_prev_event_() (see page 13-26)

- tr_search() (see page 13-27)

- tr_seek() (see page 13-28)

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

tr_next_event() 13

tr_next_event() advances the offset to the next consecutive trace event.

SYNTAX

extern tr_offset_t tr_next_event (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is after the last trace event in the data set.

See “Event Offset Positioning” on page 13-24 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5
13-24

Using the NightTrace Analysis API
tr_next_event_() 13

tr_next_event_() advances to the next consecutive trace event meeting the specified
condition in the data set.

SYNTAX

extern tr_offset_t tr_next_event_ (tr_t t,
 tr_cond_t condition);

PARAMETERS

t data set handle

condition handle of the desired condition

RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is after the last trace event in the data set.

See “Event Offset Positioning” on page 13-24 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_offset_t” on page 13-5

tr_prev_event() 13

tr_prev_event() advances to the previous trace event.

SYNTAX

extern tr_offset_t tr_prev_event (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is before the first event in the data set.
13-25

NightTrace RT User’s Guide
See “Event Offset Positioning” on page 13-24 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5

tr_prev_event_() 13

tr_prev_event_() advances to the next consecutive trace event meeting the specified
condition in the data set.

SYNTAX

extern tr_offset_t tr_prev_event_ (tr_t t,
 tr_cond_t condition);

PARAMETERS

t data set handle

condition handle of the desired condition

RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is before the first event in the data set.

See “Event Offset Positioning” on page 13-24 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_offset_t” on page 13-5
13-26

Using the NightTrace Analysis API
tr_search() 13

tr_search() searches for the trace event matching the specified condition in the direc-
tion specified. The current position remains unchanged.

SYNTAX

extern tr_offset_t tr_search(tr_t t,
 tr_dir_t direction,
 tr_cond_t condition);

PARAMETERS

t data set handle

direction direction in which to search

condition handle of the desired condition

RETURN VALUES

Returns the position of the matching trace event; if no matching event is found,
TR_EOF is returned.

See “Event Offset Positioning” on page 13-24 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_dir_t” on page 13-5

• “tr_cond_t” on page 13-5

• “tr_offset_t” on page 13-5
13-27

NightTrace RT User’s Guide
tr_seek() 13

tr_seek() sets the position to the specified offset. If the offset specifies a position that
exceeds the offset of the last trace event, the position is set to the last event in the data set.

SYNTAX

extern tr_offset_t tr_seek (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event

RETURN VALUES

The offset of the trace event at the resultant position is returned.

See “Event Offset Positioning” on page 13-24 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5
13-28

Using the NightTrace Analysis API
Basic Event Attribute Functions 13

The functions that deal with the basic attributes of trace events are:

- tr_id() (see page 13-30)

- tr_id_() (see page 13-30)

- tr_time() (see page 13-31)

- tr_time_() (see page 13-32)

- tr_nargs() (see page 13-32)

- tr_nargs_() (see page 13-33)

- tr_arg_int() (see page 13-34)

- tr_arg_int_() (see page 13-34)

- tr_arg_dbl() (see page 13-35)

- tr_arg_dbl_() (see page 13-36)

- tr_pid() (see page 13-36)

- tr_pid_() (see page 13-37)

- tr_tid() (see page 13-38)

- tr_tid_() (see page 13-38)

- tr_thread_id() (see page 13-39)

- tr_thread_id_() (see page 13-39)

- tr_task_id() (see page 13-40)

- tr_task_id_() (see page 13-41)

- tr_cpu() (see page 13-41)

- tr_cpu_() (see page 13-42)

- tr_node() (see page 13-43)

- tr_node_() (see page 13-44)

- tr_process_name() (see page 13-44)

- tr_process_name_() (see page 13-45)

- tr_task_name() (see page 13-46)

- tr_task_name_() (see page 13-46)

- tr_thread_name() (see page 13-47)

- tr_thread_name_() (see page 13-47)

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.
13-29

NightTrace RT User’s Guide
tr_id() 13

tr_id() returns the trace ID associated with the current trace event.

SYNTAX

extern int tr_id (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the trace ID associated with the current trace event.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

tr_id_() 13

tr_id_() returns the trace ID associated with the trace event at the specified offset.

SYNTAX

extern int tr_id_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event

RETURN VALUES

Returns the trace ID associated with the trace event at the specified offset; returns
zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.
13-30

Using the NightTrace Analysis API
See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5

tr_time() 13

tr_time() returns the timestamp (in seconds) of the current trace event.

NOTE

A timestamp is relative to the beginning of the trace logging dae-
mon.

SYNTAX

extern double tr_time (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the timestamp (in seconds) of the current trace event.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8
13-31

NightTrace RT User’s Guide
tr_time_() 13

tr_time_() returns the timestamp (in seconds) of the trace event at the specified offset.

NOTE

A timestamp is relative to the beginning of the trace logging dae-
mon.

SYNTAX

extern double tr_time_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event

RETURN VALUES

Returns the timestamp (in seconds) of the trace event at the specified offset; returns
zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5

tr_nargs() 13

tr_nargs() returns the number of arguments associated with the current trace event.

SYNTAX

extern int tr_nargs (tr_t t);

PARAMETERS

t data set handle
13-32

Using the NightTrace Analysis API
RETURN VALUES

Returns the number of arguments associated with the current trace event.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

tr_nargs_() 13

tr_nargs_() returns the number of arguments associated with the trace event at the
specified offset.

SYNTAX

extern int tr_nargs_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event

RETURN VALUES

Returns the number of arguments associated with the trace event at the specified off-
set; returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5
13-33

NightTrace RT User’s Guide
tr_arg_int() 13

tr_arg_int() returns the desired integer argument of the current trace event.

SYNTAX

extern int tr_arg_int (tr_t t,
 int arg_number);

PARAMETERS

t data set handle

arg_number number of the desired argument

RETURN VALUES

Returns the desired integer argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

tr_arg_int_() 13

tr_arg_int_() returns the desired integer argument of the trace event at the specified
offset.

SYNTAX

extern int tr_arg_int_ (tr_t t,
 int arg_number,
 tr_offset_t offset);

PARAMETERS

t data set handle

arg_number number of the desired argument

offset offset of the trace event
13-34

Using the NightTrace Analysis API
RETURN VALUES

Returns the desired integer argument of the trace event at the specified offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5

tr_arg_dbl() 13

tr_arg_dbl() returns the desired double argument of the current trace event.

SYNTAX

extern double tr_arg_dbl (tr_t t,
 int arg_number);

PARAMETERS

t data set handle

arg_number number of the desired argument

RETURN VALUES

Returns the desired double argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8
13-35

NightTrace RT User’s Guide
tr_arg_dbl_() 13

tr_arg_dbl_() returns the desired double argument of the trace event at the specified
offset.

SYNTAX

extern double tr_arg_dbl_ (tr_t t,
 int arg_number,
 tr_offset_t offset);

PARAMETERS

t data set handle

arg_number number of the desired argument

offset offset of the trace event

RETURN VALUES

Returns the desired double argument of the trace event at the specifed offset; returns
zero if an invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5

tr_pid() 13

tr_pid() returns the process identifier (PID) associated with the current trace event.

SYNTAX

extern int tr_pid (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the process ID of the current trace event.
13-36

Using the NightTrace Analysis API
See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

tr_pid_() 13

tr_pid_() returns the process identifier (PID) associated with the trace event at the
specified offset.

SYNTAX

extern int tr_pid_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event

RETURN VALUES

Returns the process identifier (PID) associated with the trace event at the specified
offset; returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5
13-37

NightTrace RT User’s Guide
tr_tid() 13

tr_tid() returns the internally-assigned NightTrace thread identifier (TID) associated
with the current trace event.

SYNTAX

extern int tr_tid (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the internally-assigned NightTrace thread identifier (TID) associated with
the current trace event.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

tr_tid_() 13

tr_tid_() returns the internally-assigned NightTrace thread identifier (TID) associated
with the trace event at the specified offset.

SYNTAX

extern int tr_tid_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event

RETURN VALUES

Returns the internally-assigned NightTrace thread identifier (TID) associated with
the trace event at the specified offset; returns zero if an invalid offset is specified.
13-38

Using the NightTrace Analysis API
See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5

tr_thread_id() 13

tr_thread_id() returns and NightTrace internal thread identifier associated with the
current trace event.

SYNTAX

extern int tr_thread_id (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the thread identifier associated with the current trace event.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

tr_thread_id_() 13

tr_thread_id_() returns the NightTrace internal thread identifier associated with the
trace event at the specified offset.

SYNTAX

extern int tr_thread_id_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle
13-39

NightTrace RT User’s Guide
offset offset of the trace event

RETURN VALUES

Returns the thread identifier associated with the trace event at the specified offset;
returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5

tr_task_id() 13

tr_task_id() returns the Ada task identifier associated with the current trace event.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

extern int tr_task_id (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the Ada task identifier associated with the current trace event; returns zero
if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.
13-40

Using the NightTrace Analysis API
SEE ALSO

• “tr_t” on page 13-8

tr_task_id_() 13

tr_task_id_() returns the Ada task identifier associated with the trace event at the
specified offset.

SYNTAX

extern int tr_task_id_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event

RETURN VALUES

Returns the Ada task identifier associated with the trace event at the specified offset;
returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5

tr_cpu() 13

tr_cpu() returns the CPU where the current trace event was logged. CPUs are logically
numbered starting at 0 and monotonically increase thereafter.
13-41

NightTrace RT User’s Guide
NOTE

The CPU is only recorded for trace events logged by the operating
system kernel.

SYNTAX

extern int tr_cpu (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the CPU where the current trace event was logged. For trace events not
logged by the operating system kernel, a value of -1 is returned (which indicates any
CPU).

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

tr_cpu_() 13

tr_cpu_() returns the CPU where the current trace event was logged. CPUs are logi-
cally numbered starting at 0 and monotonically increase thereafter.

NOTE

The CPU is only recorded for trace events logged by the operating
system kernel.

SYNTAX

extern int tr_cpu_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event
13-42

Using the NightTrace Analysis API
RETURN VALUES

Returns the CPU where the current trace event was logged. For trace events not
logged by the operating system kernel, a value of -1 is returned (which indicates any
CPU). If an invalid offset is specified, a value of -1 is returned.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5

tr_node() 13

tr_node() returns the name of the system where the current trace event was logged.

SYNTAX

extern char * tr_node (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the name of the system where the current trace event was logged.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8
13-43

NightTrace RT User’s Guide
tr_node_() 13

tr_node_() returns the name of the system where the trace event at the specified offset
was logged.

SYNTAX

extern char * tr_node_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event

RETURN VALUES

Returns the name of the system where the trace event at the specified offset was
logged; returns NULL if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5

tr_process_name() 13

tr_process_name() returns the name of the process associated with the current trace
event.

SYNTAX

extern char * tr_process_name (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the name of the process associated with the current trace event.
13-44

Using the NightTrace Analysis API
See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

tr_process_name_() 13

tr_process_name_() returns the name of the process associated with the trace event
at the specified offset.

SYNTAX

extern char * tr_process_name_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event

RETURN VALUES

Returns the name of the process associated with the trace event at the specified off-
set; returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5
13-45

NightTrace RT User’s Guide
tr_task_name() 13

tr_task_name() returns the name of the task associated with the current trace event.

SYNTAX

extern char * tr_task_name (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the name of the task associated with the current trace event.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

tr_task_name_() 13

tr_task_name_() returns the name of the task associated with the trace event at the
specified offset.

SYNTAX

extern char * tr_task_name_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event

RETURN VALUES

Returns the name of the task associated with the trace event at the specified offset;
returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.
13-46

Using the NightTrace Analysis API
See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5

tr_thread_name() 13

tr_thread_name() returns the thread name associated with the current trace event.

SYNTAX

extern char * tr_thread_name (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns the thread name associated with the current trace event.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

tr_thread_name_() 13

tr_thread_name_() returns the thread name associated with the trace event at the
specified offset.

SYNTAX

extern char * tr_thread_name_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t data set handle

offset offset of the trace event
13-47

NightTrace RT User’s Guide
RETURN VALUES

Returns the thread name associated with the trace event at the specified offset;
returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 13-29 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_offset_t” on page 13-5
13-48

Using the NightTrace Analysis API
Conditions 13

The functions that deal with the creation and manipulation of conditions and their require-
ments are:

- tr_cond_create() (see page 13-50)

- tr_cond_reset() (see page 13-51)

- tr_cond_find() (see page 13-51)

- tr_cond_id() (see page 13-52)

- tr_cond_id_range() (see page 13-53)

- tr_cond_id_clear() (see page 13-54)

- tr_cond_cpu() (see page 13-55)

- tr_cond_cpu_clear() (see page 13-55)

- tr_cond_pid() (see page 13-56)

- tr_cond_pid_name() (see page 13-57)

- tr_cond_pid_clear() (see page 13-58)

- tr_cond_tid() (see page 13-59)

- tr_cond_tid_name() (see page 13-60)

- tr_cond_tid_clear() (see page 13-61)

- tr_cond_node() (see page 13-62)

- tr_cond_node_clear() (see page 13-63)

- tr_cond_func_or() (see page 13-64)

- tr_cond_func_and() (see page 13-66)

- tr_cond_func_clear() (see page 13-68)

- tr_cond_expr_and() (see page 13-69)

- tr_cond_expr_or() (see page 13-70)

- tr_cond_not() (see page 13-71)

- tr_cond_or() (see page 13-72)

- tr_cond_and() (see page 13-73)

- tr_cond_copy() (see page 13-74)

- tr_cond_name() (see page 13-75)

- tr_cond_satisfy() (see page 13-75)

- tr_cond_satisfy_() (see page 13-76)

- tr_cond_register() (see page 13-77)
13-49

NightTrace RT User’s Guide
- tr_cond_offset() (see page 13-78)

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

tr_cond_create() 13

tr_cond_create() creates a new condition which will (initially) match all events.

SYNTAX

extern tr_cond_t tr_cond_create (tr_t t,
 char * name);

PARAMETERS

t data set handle

name name to subsequently reference newly-created condition; if the
name is non-null, the condition may be retrieved via
tr_cond_find() subsequently; if a condition with the same
name already exists, the existing condition will become
unnamed but will not be otherwise modified.

RETURN VALUES

Returns an opaque handle which identifies the condition; in the event there is insuf-
ficient memory to create the condition, TR_NO_COND will be returned.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_find()” on page 13-51
13-50

Using the NightTrace Analysis API
tr_cond_reset() 13

tr_cond_reset() resets the condition to match all events; all previous modifications
to the specified condition are discarded.

SYNTAX

extern void tr_cond_reset (tr_t t,
 tr_cond_t cond);

PARAMETERS

t data set handle

cond handle of condition to reset

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_create()” on page 13-50

tr_cond_find() 13

tr_cond_find() locates an existing condition (perhaps imported from a file) and
returns its handle.

SYNTAX

extern tr_cond_t tr_cond_find (tr_t t,
 char * name);

PARAMETERS

t data set handle

name name used to reference the desired condition as defined in
tr_cond_create()

RETURN VALUES

Returns the handle of the desired condition; returns TR_NO_COND if the named con-
dition does not exist.
13-51

NightTrace RT User’s Guide
See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_create()” on page 13-50

tr_cond_id() 13

tr_cond_id() appends the specified trace ID to the list of required trace IDs that must
be matched for a particular condition to evaluate to TRUE.

NOTE

Before the first tr_cond_id() or tr_cond_id_range()
call, or after calling tr_cond_id_clear(), the trace ID
requirement is empty which matches any ID.

SYNTAX

extern int tr_cond_id (tr_t t,
 tr_cond_t cond,
 int id);

PARAMETERS

t data set handle

cond handle of the condition with which the given trace ID is to be
associated

id trace ID to add to those that must be matched for the given con-
dition to evaluate to TRUE

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the ID.

See “Conditions” on page 13-49 for related functions.
13-52

Using the NightTrace Analysis API
See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_create()” on page 13-50

• “tr_cond_id_range()” on page 13-53

• “tr_cond_id_clear()” on page 13-54

tr_cond_id_range() 13

tr_cond_id_range() appends the trace IDs included in the given trace ID range to
the list of required trace IDs that must be matched for the given condition to evaluate to
TRUE.

NOTE

Before the first tr_cond_id() or tr_cond_id_range()
call, or after calling tr_cond_id_clear(), the trace ID
requirement is empty which matches any ID.

SYNTAX

extern int tr_cond_id_range (tr_t t,
 tr_cond_t cond,
 int id1,
 int id2);

PARAMETERS

t data set handle

cond handle of the condition with which the given trace ID range is
to be associated

id1 minimum value in the range of trace IDs to be associated with
the given condition

id2 maximum value in the range of trace IDs to be associated with
the given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the IDs.
13-53

NightTrace RT User’s Guide
See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_id()” on page 13-52

• “tr_cond_id_clear()” on page 13-54

tr_cond_id_clear() 13

tr_cond_id_clear() removes all trace ID requirements from a particular condition.

NOTE

Before the first tr_cond_id() or tr_cond_id_range()
call, or after calling tr_cond_id_clear(), the trace ID
requirement is empty which matches any ID.

SYNTAX

extern void tr_cond_id_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t data set handle

cond handle of the condition from which all trace ID requirements
will be removed

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_id()” on page 13-52

• “tr_cond_id_range()” on page 13-53
13-54

Using the NightTrace Analysis API
tr_cond_cpu() 13

tr_cond_cpu() sets the CPU requirement to any of the CPUs defined in the specified
CPU bias.

SYNTAX

extern void tr_cond_cpu (tr_t t,
 tr_cond_t cond,
 int cpu_bias);

PARAMETERS

t data set handle

cond handle of the condition with which to associate the given CPU
bias

cpu_bias CPU bias to apply to the given condition

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_cpu_clear()” on page 13-55

tr_cond_cpu_clear() 13

tr_cond_cpu_clear() clears the CPU requirement for the given condition.

NOTE

This function is equivalent to calling tr_cond_cpu() with -1
as the CPU bias.

SYNTAX

extern void tr_cond_cpu_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t data set handle
13-55

NightTrace RT User’s Guide
cond handle of the condition

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_cpu()” on page 13-55

tr_cond_pid() 13

tr_cond_pid() appends the specified process ID to the list of required processes that
must be matched for the given condition to evaluate to TRUE.

NOTE

B e f o r e t h e f i r s t tr_cond_pid() c a l l o r
tr_cond_pid_name() , o r a f t e r c a l l i n g
tr_cond_pid_clear(), the process requirement is empty
which matches any process.

SYNTAX

extern int tr_cond_pid (tr_t t,
 tr_cond_t cond,
 int pid);

PARAMETERS

t data set handle

cond handle of the condition

pid process ID to be added to the list of processes associated with
the given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the specified process ID.

See “Conditions” on page 13-49 for related functions.
13-56

Using the NightTrace Analysis API
See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_pid_name()” on page 13-57

• “tr_cond_pid_clear()” on page 13-58

tr_cond_pid_name() 13

tr_cond_pid_name() appends the process with the specified name to the list of
required processes that must be matched for the given condition to evaluate to TRUE.

NOTE

B e f o r e t h e f i r s t tr_cond_pid() c a l l o r
tr_cond_pid_name() , o r a f t e r c a l l i n g
tr_cond_pid_clear(), the process requirement is empty
which matches any process.

SYNTAX

extern int tr_cond_pid_name (tr_t t,
 tr_cond_t cond,
 char * process_name);

PARAMETERS

t data set handle

cond handle of the condition

process_name name of the process to be added to the list of processes associ-
ated with the given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the process with the specified name.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.
13-57

NightTrace RT User’s Guide
SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_pid()” on page 13-56

• “tr_cond_pid_clear()” on page 13-58

tr_cond_pid_clear() 13

tr_cond_pid_clear() removes all process requirements from a particular condition.

NOTE

B e f o r e t h e f i r s t tr_cond_pid() c a l l o r
tr_cond_pid_name() , o r a f t e r c a l l i n g
tr_cond_pid_clear(), the process requirement is empty
which matches any process.

SYNTAX

extern void tr_cond_pid_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t data set handle

cond handle of the condition

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_pid()” on page 13-56

• “tr_cond_pid_name()” on page 13-57
13-58

Using the NightTrace Analysis API
tr_cond_tid() 13

tr_cond_tid() appends the specified thread ID to the list of required threads IDs that
must be matched for the given condition to evaluate to TRUE.

NOTE

B e f o r e t h e f i r s t tr_cond_tid() c a l l o r
tr_cond_tid_name() , o r a f t e r c a l l i n g
tr_cond_tid_clear(), the thread requirement is empty
which matches any thread.

SYNTAX

extern int tr_cond_tid (tr_t t,
 tr_cond_t cond,
 int tid);

PARAMETERS

t data set handle

cond handle of the condition

tid thread ID to be added to the list of threads associated with the
given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the specified thread ID.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_tid_name()” on page 13-60

• “tr_cond_tid_clear()” on page 13-61
13-59

NightTrace RT User’s Guide
tr_cond_tid_name() 13

tr_cond_tid_name() appends the thread with the specified name to the list of
required threads that must be matched for the given condition to evaluate to TRUE.

NOTE

B e f o r e t h e f i r s t tr_cond_tid() c a l l o r
tr_cond_tid_name() , o r a f t e r c a l l i n g
tr_cond_tid_clear(), the thread requirement is empty
which matches any thread.

SYNTAX

extern int tr_cond_tid_name (tr_t t,
 tr_cond_t cond,
 char * tid_name);

PARAMETERS

t data set handle

cond handle of the condition

tid_name name of the thread to be added to the list of threads associated
with the given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the thread with the specified name.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_tid()” on page 13-59

• “tr_cond_tid_clear()” on page 13-61
13-60

Using the NightTrace Analysis API
tr_cond_tid_clear() 13

tr_cond_tid_clear() removes all thread requirements from a particular condition.

NOTE

B e f o r e t h e f i r s t tr_cond_tid() c a l l o r
tr_cond_tid_name() , o r a f t e r c a l l i n g
tr_cond_tid_clear(), the thread requirement is empty
which matches any thread.

SYNTAX

extern void tr_cond_tid_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t data set handle

cond handle of the condition

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5
13-61

NightTrace RT User’s Guide
tr_cond_node() 13

tr_cond_node() appends the specified system node name to the list of required node
names that must be matched for the given condition to evaluate to TRUE.

NOTE

Before the first tr_cond_node() call or after calling
tr_cond_node_clear(), the node requirement is empty
which matches any node.

SYNTAX

extern int tr_cond_node (tr_t t,
 tr_cond_t cond,
 char * node);

PARAMETERS

t data set handle

cond handle of the condition

node name of the node to be added to the list of nodes associated
with the given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the specified node.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_node_clear()” on page 13-63
13-62

Using the NightTrace Analysis API
tr_cond_node_clear() 13

tr_cond_node_clear() removes all node name requirements from a particular con-
dition.

NOTE

Before the first tr_cond_node() call or after calling
tr_cond_node_clear(), the node requirement is empty
which matches any node.

SYNTAX

extern void tr_cond_node_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t data set handle

cond handle of the condition

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_node()” on page 13-62
13-63

NightTrace RT User’s Guide
tr_cond_func_or() 13

tr_cond_func_or() modifies the specified condition to include an additional require-
ment as specified by the user-callable function. The context parameter will be passed to
the specified user function.

NOTE

M u l t i p l e r e q u i r e m e n t s m a y b e a p p e n d e d b y c a l l i n g
tr_cond_or() / tr_cond_and() multiple times on the same
condition.

SYNTAX

extern int tr_cond_func_or (tr_t t,
 tr_cond_t cond,
 tr_cond_func_t func,
 void *context);

PARAMETERS

t data set handle

cond handle of the condition

func user-callable function to be associated with the given condition

context

ADDITIONAL INFORMATION

When the API evaluates the condition, it first ensures that the following require-
ments (if they exist) are met:

- event's trace ID matches or is within any specified trace ID or trace
ID range

- event's process ID matches one of the specified process IDs

- event's thread ID matches one of the specified thread IDs

- event's task ID matches one of the specified task IDs

- event's node name matches one of the specified node names

- event's CPU intersects the specified CPU bias

If and only if these requirements are met, then the user's function is called.

The user function should return 1 (true) if the user's requirement is met or 0 (false) if
it is not met.

Before calling tr_cond_func_or(), the condition will evaluate to TRUE if all
other requirements have been met.
13-64

Using the NightTrace Analysis API
User-defined functions may not be called by the API if the initial requirements are
not met or if the left hand side of short circuit boolean condition already resolves the
condition.

User-defined functions are invoked in reverse order from which they are specified
with the following parenthetical relationship:

last_function OPERATOR (previous_function)

Thus calling:

tr_cond_func_or(cond,A);
tr_cond_func_and(cond,B);
tr_cond_func_or(cond,C);
tr_cond_func_and(cond,D);

would result in the following evaluation:

return D && (C || (B && A))

RETURN VALUES

Returns zero on success and non-zero if insufficient memory is available to register
the user function with the specified condition.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_func_t” on page 13-4

• “tr_cond_or()” on page 13-72

• “tr_cond_and()” on page 13-73

• “tr_cond_func_and()” on page 13-66

• “tr_cond_func_clear()” on page 13-68
13-65

NightTrace RT User’s Guide
tr_cond_func_and() 13

tr_cond_func_and() modifies the specified condition to include an additional
requirement as specified by the user-callable function. The context parameter will be
passed to the specified user function.

NOTE

M u l t i p l e r e q u i r e m e n t s m a y b e a p p e n d e d b y c a l l i n g
tr_cond_or() / tr_cond_and() multiple times on the same
condition.

SYNTAX

extern int tr_cond_func_and (tr_t t,
 tr_cond_t cond,
 tr_cond_func_t func,
 void *context);

PARAMETERS

t data set handle

cond handle of the condition

func user-callable function to be associated with the given condition

context

ADDITIONAL INFORMATION

When the API evaluates the condition, it first ensures that the following require-
ments (if they exist) are met:

- event's trace ID matches or is within any specified trace ID or trace
ID range

- event's process ID matches one of the specified process IDs

- event's thread ID matches one of the specified thread IDs

- event's task ID matches one of the specified task IDs

- event's node name matches one of the specified node names

- event's CPU intersects the specified CPU bias

If and only if these requirements are met, then the user's function is called.

The user function should return 1 (true) if the user's requirement is met or 0 (false) if
it is not met.

Before calling tr_cond_func_and(), the condition will evaluate to TRUE if all
other requirements have been met.
13-66

Using the NightTrace Analysis API
User-defined functions may not be called by the API if the initial requirements are
not met or if the left hand side of short circuit boolean condition already resolves the
condition.

User-defined functions are invoked in reverse order from which they are specified
with the following parenthetical relationship:

last_function OPERATOR (previous_function)

Thus calling:

tr_cond_func_or(cond,A);
tr_cond_func_and(cond,B);
tr_cond_func_or(cond,C);
tr_cond_func_and(cond,D);

would result in the following evaluation:

return D && (C || (B && A))

RETURN VALUES

Returns zero on success and non-zero if insufficient memory is available to register
the user function with the specified condition.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_func_t” on page 13-4

• “tr_cond_or()” on page 13-72

• “tr_cond_and()” on page 13-73

• “tr_cond_func_or()” on page 13-64

• “tr_cond_func_and()” on page 13-66
13-67

NightTrace RT User’s Guide
tr_cond_func_clear() 13

tr_cond_func_clear() clears all previously specified user function requirements.

SYNTAX

extern void tr_cond_func_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t data set handle

cond handle of the condition

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_func_or()” on page 13-64

• “tr_cond_func_clear()” on page 13-68
13-68

Using the NightTrace Analysis API
tr_cond_expr_and() 13

tr_cond_expr_and() modifies the specified condition to include an additional
requirement as specified by a valid NightTrace expression.

NOTE

M u l t i p l e r e q u i r e m e n t s m a y b e a p p e n d e d b y c a l l i n g
tr_cond_or() / tr_cond_and() multiple times on the same
condition.

SYNTAX

extern char * tr_cond_expr_and (tr_t t,
 tr_cond_t cond,
 char * expr);

PARAMETERS

t data set handle

cond handle of the condition

expr string containing the NightTrace expression to be associated
with the given condition

RETURN VALUES

Returns zero on success or a character string describing why the specified expres-
sion is invalid.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_expr_or()” on page 13-70
13-69

NightTrace RT User’s Guide
tr_cond_expr_or() 13

tr_cond_expr_or() modifies the specified condition to include an additional require-
ment as specified by a valid NightTrace expression.

NOTE

M u l t i p l e r e q u i r e m e n t s m a y b e a p p e n d e d b y c a l l i n g
tr_cond_or() / tr_cond_and() multiple times on the same
condition.

SYNTAX

extern char * tr_cond_expr_or (tr_t t,
 tr_cond_t cond,
 char * expr);

PARAMETERS

t data set handle

cond handle of the condition

expr string containing the NightTrace expression to be associated
with the given condition

RETURN VALUES

Returns zero on success or a character string describing why the specified expres-
sion is invalid.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_expr_and()” on page 13-69
13-70

Using the NightTrace Analysis API
tr_cond_not() 13

tr_cond_not() creates a new condition which evaluates to TRUE only if the specified
condition evaluates to FALSE.

NOTE

The new condition will still reference the specified condition; thus
subsequent changes to the specified condition will affect the out-
come of the created condition.

SYNTAX

extern tr_cond_t tr_cond_not (tr_t t,
 char* name,
 tr_cond_t cond);

PARAMETERS

t data set handle

name name to reference the newly-created condition; if an existing
condition already exists with the specified name, it becomes
unnamed but remains otherwise unchanged; if name is NULL,
the newly-created condition will be unnamed

cond existing condition on which to base the newly-created condi-
tion

RETURN VALUES

Returns the handle of the newly-created condition; returns TR_NO_COND if insuffi-
cient memory is available to create the new condition.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_or()” on page 13-72

• “tr_cond_and()” on page 13-73
13-71

NightTrace RT User’s Guide
tr_cond_or() 13

tr_cond_or() creates a new condition which evaluates to TRUE if either of the speci-
fied conditions evaluate to TRUE.

NOTE

The new condition will still reference the specified conditions;
thus subsequent changes to the specified conditions will affect the
outcome of the created condition.

SYNTAX

extern tr_cond_t tr_cond_or (tr_t t,
 char * name,
 tr_cond_t left,
 tr_cond_t right);

PARAMETERS

t data set handle

name name to reference the newly-created condition; if an existing
condition already exists with the specified name, it becomes
unnamed but remains otherwise unchanged; if name is NULL,
the newly-created condition will be unnamed

left one of two existing conditions either of which must evaluate to
TRUE for the newly-created condition to evaluate to TRUE

right one of two existing conditions either of which must evaluate to
TRUE for the newly-created condition to evaluate to TRUE

RETURN VALUES

Returns the handle of the newly-created condition; returns TR_NO_COND if insuffi-
cient memory is available to create the new condition.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_not()” on page 13-71
13-72

Using the NightTrace Analysis API
• “tr_cond_and()” on page 13-73

tr_cond_and() 13

tr_cond_and() creates a new condition which evaluates to TRUE only if both of the
specified conditions evaluate to TRUE.

NOTE

The new condition will still reference the specified conditions;
thus subsequent changes to the specified conditions will affect the
outcome of the created condition.

SYNTAX

extern tr_cond_t tr_cond_and (tr_t t,
 char * name,
 tr_cond_t left,
 tr_cond_t right);

PARAMETERS

t data set handle

name name to reference the newly-created condition; if an existing
condition already exists with the specified name, it becomes
unnamed but remains otherwise unchanged; if name is NULL,
the newly-created condition will be unnamed

left one of two existing conditions which must both evaluate to
TRUE for the newly-created condition to evaluate to TRUE

right one of two existing conditions which must both evaluate to
TRUE for the newly-created condition to evaluate to TRUE

RETURN VALUES

Returns the handle of the newly-created condition; returns TR_NO_COND if insuffi-
cient memory is available to create the new condition.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5
13-73

NightTrace RT User’s Guide
• “tr_cond_not()” on page 13-71

• “tr_cond_or()” on page 13-72

tr_cond_copy() 13

tr_cond_copy() creates a copy of the root of specified condition.

NOTE

If the specified condition contains references to other conditions,
(e.g. it was created by a tr_cond_or() / tr_cond_and()
call), the references remain (i.e. this operation only copies the root
and not all conditions it may reference).

SYNTAX

extern tr_cond_t tr_cond_copy (tr_t t,
 char * name,
 tr_cond_t cond);

PARAMETERS

t data set handle

name name to reference the newly-created condition; if an existing
condition already exists with the specified name, it becomes
unnamed but remains otherwise unchanged; if name is NULL,
the newly-created condition will be unnamed

cond handle of existing condition to copy to create new condition

RETURN VALUES

Returns the handle of the newly-created copy of the specified condition; returns
TR_NO_COND if insufficient memory is available to create the new condition.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_or()” on page 13-72

• “tr_cond_and()” on page 13-73
13-74

Using the NightTrace Analysis API
tr_cond_name() 13

tr_cond_name() returns the name of the specified condition.

SYNTAX

extern char * tr_cond_name (tr_t t,
 tr_cond_t cond);

PARAMETERS

t data set handle

cond handle of the condition

RETURN VALUES

Returns the name of the specified condition (for debugging purposes) or NULL if it
is unnamed.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

tr_cond_satisfy() 13

tr_cond_satisfy() is used to determine if the current event satisfies the specified
condition.

SYNTAX

extern int tr_cond_satisfy (tr_t t,
 tr_cond_t cond);

PARAMETERS

t data set handle

cond handle of the condition
13-75

NightTrace RT User’s Guide
RETURN VALUES

Returns TRUE if the current event satisfies the specified condition; returns FALSE
otherwise.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

tr_cond_satisfy_() 13

tr_cond_satisfy_() is used to determine if the trace event at the specified offset sat-
isfies the specified condition.

SYNTAX

extern int tr_cond_satisfy_ (tr_t t,
 tr_cond_t cond,
 tr_offset_t offset);

PARAMETERS

t data set handle

cond handle of the condition

offset offset of the trace event

RETURN VALUES

Returns TRUE if the trace event at the specified offset satisfies the specified condi-
tion; returns FALSE otherwise.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5
13-76

Using the NightTrace Analysis API
• “tr_offset_t” on page 13-5

tr_cond_register() 13

tr_cond_register() registers the specified condition so that it is evaluated for every
event.

NOTE

Registration of conditions increases processing time.

SYNTAX

extern void tr_cond_register (tr_t t,
 tr_cond_t cond);

PARAMETERS

t data set handle

cond handle of condition to register

ADDITIONAL INFORMATION

This is the implementation of NightTrace “profiles” which are basically conditions
that are evaluated as each event is consumed.

tr_activate() should be called after all desired conditions are registered.

Registering conditions is only necessary if you wish to refer to the offset at which
the specified condition was last active.

Failure to call tr_activate() after registration of conditions will result in erro-
neous statistics about such conditions.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_activate()” on page 13-89

• “Profile References” on page 11-107
13-77

NightTrace RT User’s Guide
tr_cond_offset() 13

tr_cond_offset() returns the offset at which the specified condition last evaluated to
TRUE.

SYNTAX

extern tr_offset_t tr_cond_offset (tr_t t,
 tr_cond_t cond);

PARAMETERS

t data set handle

cond handle of the condition

RETURN VALUES

Returns the offset at which the specified condition last evaluated to TRUE; returns
TR_EOF if the condition has not yet evaluated to true up to the current offset.

See “Conditions” on page 13-49 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_offset_t” on page 13-5
13-78

Using the NightTrace Analysis API
State-oriented Interfaces 13

The functions that deal with the creation, configuration, and activation of states are:

- tr_state_create() (see page 13-80)

- tr_state_find() (see page 13-81)

- tr_state_name() (see page 13-81)

- tr_state_start_id() (see page 13-82)

- tr_state_start_id_range() (see page 13-83)

- tr_state_start_id_clear() (see page 13-84)

- tr_state_end_id() (see page 13-84)

- tr_state_end_id_range() (see page 13-85)

- tr_state_end_id_clear() (see page 13-86)

- tr_state_start_cond() (see page 13-86)

- tr_state_start_cond_clear() (see page 13-87)

- tr_state_end_cond() (see page 13-88)

- tr_state_end_cond_clear() (see page 13-88)

- tr_activate() (see page 13-89)

- tr_state_info() (see page 13-90)

- tr_state_info_() (see page 13-91)

- tr_state_active() (see page 13-92)

- tr_state_active_() (see page 13-93)

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.
13-79

NightTrace RT User’s Guide
tr_state_create() 13

tr_state_create() creates a new state with the following attributes:

Start Events: ALL

End Events: ALL

Start Condition: TRUE

End Condition: TRUE

SYNTAX

extern tr_state_t tr_state_create (tr_t t,
 char * name);

PARAMETERS

t data set handle

name name to reference the newly-created state; if an existing state
already exists with the specified name, it becomes unnamed but
remains otherwise unchanged; i f name is NULL , the
newly-created state will be unnamed

RETURN VALUES

Returns an opaque handle which identifies the newly-created state; returns
TR_NO_STATE if there is insufficient memory available to create the state.

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8
13-80

Using the NightTrace Analysis API
tr_state_find() 13

tr_state_find() locates an existing state (perhaps imported from a file) and returns
its handle.

SYNTAX

extern tr_state_t tr_state_find (tr_t t,
 char * name);

PARAMETERS

t data set handle

name name used to reference the desired state as defined in
tr_state_create()

RETURN VALUES

Returns the handle of the desired state; returns TR_NO_STATE if the named state
does not exist.

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

• “tr_state_create()” on page 13-80

tr_state_name() 13

tr_state_name() returns the name of the specified state.

SYNTAX

extern char * tr_state_name (tr_t t,
 tr_state_t state);

PARAMETERS

t data set handle

state handle of the state
13-81

NightTrace RT User’s Guide
RETURN VALUES

Returns the name of the specified state (for debugging purposes) or NULL if the state
is unnamed.

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

tr_state_start_id() 13

tr_state_start_id() appends the specified trace ID to the list of required trace IDs
that must be matched for the start event that defines the state.

SYNTAX

extern int tr_state_start_id (tr_t t,
 tr_state_t state,
 int id);

PARAMETERS

t data set handle

state handle of the state

id trace ID to add to the list of required trace IDs for the start
event that defines the state

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the ID.

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8
13-82

Using the NightTrace Analysis API
• “tr_state_t” on page 13-7

tr_state_start_id_range() 13

tr_state_start_id_range() appends the trace IDs included in the given trace ID
range to the list of required trace IDs that must be matched for the start event that defines
the state.

SYNTAX

extern int tr_state_start_id_range (tr_t t,
 tr_state_t state,
 int id1,
 int id2);

PARAMETERS

t data set handle

state handle of the state

id1 minimum value in the range of trace IDs to be associated with
the given state

id2 maximum value in the range of trace IDs to be associated with
the given state

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the IDs.

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7
13-83

NightTrace RT User’s Guide
tr_state_start_id_clear() 13

tr_state_start_id_clear() removes all trace ID requirements related to the start
event that defines a particular state (such that that all events are candidates to start a state).

SYNTAX

extern void tr_state_start_id_clear (tr_t t,
 tr_state_t state);

PARAMETERS

t data set handle

state handle of the state

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

tr_state_end_id() 13

tr_state_end_id() appends the specified trace ID to the list of required trace IDs
that must be matched for the end event that defines the state.

SYNTAX

extern int tr_state_end_id (tr_t t,
 tr_state_t state,
 int id);

PARAMETERS

t data set handle

state handle of the state

id trace ID to add to the list of required trace IDs for the end event
that defines the state

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the ID.
13-84

Using the NightTrace Analysis API
See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

tr_state_end_id_range() 13

tr_state_end_id_range() appends the trace IDs included in the given trace ID
range to the list of required trace IDs that must be matched for the end event that defines
the state.

SYNTAX

extern int tr_state_end_id_range (tr_t t,
 tr_state_t state,
 int id1,
 int id2);

PARAMETERS

t data set handle

state handle of the state

id1 minimum value in the range of trace IDs to be associated with
the given state

id2 maximum value in the range of trace IDs to be associated with
the given state

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the IDs.

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8
13-85

NightTrace RT User’s Guide
• “tr_state_t” on page 13-7

tr_state_end_id_clear() 13

tr_state_end_id_clear() removes all trace ID requirements related to the end
event that defines a particular state (such that that all events are candidates to end a state).

SYNTAX

extern void tr_state_end_id_clear (tr_t t,
 tr_state_t state);

PARAMETERS

t data set handle

state handle of the state

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

tr_state_start_cond() 13

tr_state_start_cond() associates a certain condition with start of a particular
state.

SYNTAX

extern void tr_state_start_cond (tr_t t,
 tr_state_t state,
 tr_cond_t cond);

PARAMETERS

t data set handle

state handle of the state

cond handle of the condition to associate with the start of the speci-
fied state
13-86

Using the NightTrace Analysis API
See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

• “tr_cond_t” on page 13-5

tr_state_start_cond_clear() 13

tr_state_start_cond_clear() clears any conditions associated with start of a
particular state.

SYNTAX

extern void tr_state_start_cond_clear (tr_t t,
 tr_state_t state);

PARAMETERS

t data set handle

state handle of the state

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7
13-87

NightTrace RT User’s Guide
tr_state_end_cond() 13

tr_state_end_cond() associates a certain condition with end of a particular state.

SYNTAX

extern void tr_state_end_cond (tr_t t,
 tr_state_t state,
 tr_cond_t cond);

PARAMETERS

t data set handle

state handle of the state

cond handle of the condition to associate with the end of the speci-
fied state

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

• “tr_cond_t” on page 13-5

tr_state_end_cond_clear() 13

tr_state_end_cond_clear() clears any conditions associated with end of a partic-
ular state.

SYNTAX

extern void tr_state_end_cond_clear (tr_t t,
 tr_state_t state);

PARAMETERS

t data set handle

state handle of the state

See “State-oriented Interfaces” on page 13-79 for related functions.
13-88

Using the NightTrace Analysis API
See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

tr_activate() 13

tr_activate() must be called after the configuration of all states and the registration
of all conditions is complete. It may be called multiple times.

NOTE

Failure to call this function will result in undefined state evalua-
tion and false conditions.

SYNTAX

extern int tr_activate (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns zero upon successful activation or -1 if a circular dependency between
states is detected.

ADDITIONAL INFORMATION

If the current position is other than the beginning of the data set, user-defined func-
tions associated with conditions in states may be called during the invocation of
tr_state_active().

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_active()” on page 13-92
13-89

NightTrace RT User’s Guide
tr_state_info() 13

tr_state_info() returns a structure containing the current values associated with the
last completed instance of the specified state

SYNTAX

extern void tr_state_info (tr_t t,
 tr_state_t state,
 tr_state_info_t * info);

PARAMETERS

t data set handle

state handle of the state

info pointer to a structure which will contain the current values
associated with the last completed instance of the specified
state

RETURN VALUES

The return values are contained in the tr_state_info_t structure (see
“tr_state_info_t” on page 13-7).

If the state has never been active, start_offset and end_offset are set to
TR_EOF and gap and duration are set to zero.

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

• “tr_state_info_t” on page 13-7
13-90

Using the NightTrace Analysis API
tr_state_info_() 13

tr_state_info_() returns a structure containing the current values associated with
the given state at the specified offset.

NOTE

Calling tr_state_info_() is an expensive operation if the
specified offset is not the current position.

SYNTAX

extern void tr_state_info_ (tr_t t,
 tr_state_t state,
 tr_state_info_t * info,
 tr_offset_t offset);

PARAMETERS

t data set handle

state handle of the state

info pointer to a structure which will contain the current values
associated with the given state at the specified offset

offset offset of the specifed state

RETURN VALUES

The return values are contained in the tr_state_info_t structure (see
“tr_state_info_t” on page 13-7).

If the state has never been active, start_offset and end_offset are set to
TR_EOF and gap and duration are set to zero.

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

• “tr_state_info_t” on page 13-7

• “tr_offset_t” on page 13-5
13-91

NightTrace RT User’s Guide
tr_state_active() 13

tr_state_active() is used to determine if the specified state is active at the current
offset.

SYNTAX

extern int tr_state_active (tr_t t,
 tr_state_t state);

PARAMETERS

t data set handle

state handle of the state

RETURN VALUES

Returns TRUE if the specified state is active at the current offset; returns FALSE oth-
erwise.

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7
13-92

Using the NightTrace Analysis API
tr_state_active_() 13

tr_state_active_() is used to determine if the given state is active at the specified
offset.

NOTE

Calling tr_state_active_() is an expensive operation if the
specified offset is not the current position.

SYNTAX

extern int tr_state_active_ (tr_t t,
 tr_state_t state,
 tr_offset_t offset);

PARAMETERS

t data set handle

state handle of the state

offset offset of the specified state

RETURN VALUES

Returns TRUE if the given state is active at the specified offset; returns FALSE oth-
erwise.

See “State-oriented Interfaces” on page 13-79 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

• “tr_offset_t” on page 13-5
13-93

NightTrace RT User’s Guide
Output Function 13

The function dealing with the output of trace data is:

- tr_copy_input() (see page 13-94)

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

tr_copy_input() 13

tr_copy_input() consumes the entire input data set and copies all events which sat-
isfy the specified condition to the output file.

SYNTAX

extern int tr_copy_input (tr_t t,
 char * output_file,
 tr_cond_t cond,
 int mode);

PARAMETERS

t data set handle

output_file pathname of the output file

cond handle of the condition

mode parameter passed to the system call invoked to open/create the
specified output file

RETURN VALUES

Returns zero upon success; returns -1 upon error in which case errno will be set to
a value as per open(2) or read(2).

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5
13-94

Using the NightTrace Analysis API
String Table Functions 13

The following functions are provided to create, manage, and search NightTrace string
tables:

- tr_get_string() (see page 13-95)

- tr_get_item() (see page 13-96)

- tr_create_table() (see page 13-97)

- tr_append_table() (see page 13-98)

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

tr_get_string() 13

tr_get_string() returns the string associated with the number of the desired item in
the specified table.

SYNTAX

extern char * tr_get_string (tr_t t,
 char * table_name,
 int item);

PARAMETERS

t data set handle

table_name name of the string table

item position of the desired item in the specified table

RETURN VALUES

Returns the string associated with the number of the desired item in the specified
table; returns “” if no match is found.

See “String Table Functions” on page 13-95 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “String Tables” on page 6-16
13-95

NightTrace RT User’s Guide
tr_get_item() 13

tr_get_item() returns the item number associated with the string entry in the speci-
fied table that matches the specified value.

SYNTAX

extern int tr_get_item (tr_t t,
 char * table_name,
 char * value);

PARAMETERS

t data set handle

table_name name of the table to search for the specified string

value string entry to search for in the specified table

RETURN VALUES

Returns the item number associated with the string entry in the specified table that
matches the specified value; returns zero if no match is found.

See “String Table Functions” on page 13-95 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “String Tables” on page 6-16
13-96

Using the NightTrace Analysis API
tr_create_table() 13

tr_create_table() is used to create a string table.

SYNTAX

extern int tr_create_table (tr_t t,
 char * table_name,
 char * default_value,
 tr_string_node_t * list,
 int count);

PARAMETERS

t data set handle

table_name name to subsequently reference the newly-created table

default_value string to associate with integer values that are not explicitly
referenced in the table

list pointer to a list of string table entries

count number of entries in the list of string table entries

RETURN VALUES

Returns zero on success; returns -1 if insufficient memory is available to complete
the request or invalid values are specified.

ADDITIONAL INFORMATION

All strings referenced by value fields are copied during the operation; therefore the
source of the strings need not remain allocated after the call completes.

See “String Table Functions” on page 13-95 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_string_node_t” on page 13-8

• “String Tables” on page 6-16
13-97

NightTrace RT User’s Guide
tr_append_table() 13

tr_append_table() associates a particular string with a certain position in a given
string table.

NOTE

If the position specified is already associated with a string,
tr_append_table() will overwrite the previous entry.

SYNTAX

extern int tr_append_table (tr_t t,
 char * table_name,
 char * value,
 int item);

PARAMETERS

t data set handle

table_name name of the table to modify

value character string to assign to the given item number

item position in the table to associate with the given string

RETURN VALUES

Returns zero on success; returns -1 if insufficient memory is available to complete
the request or invalid values are specified.

ADDITIONAL INFORMATION

All strings referenced by value fields are copied during the operation; therefore the
source of the strings need not remain allocated after the call completes.

See “String Table Functions” on page 13-95 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “String Tables” on page 6-16
13-98

Using the NightTrace Analysis API
Callback Interfaces 13

The following functions deal with the callback capabilities of the NightTrace Analysis
Application Programming Interface:

- tr_iterate() (see page 13-99)

- tr_halt() (see page 13-100)

- tr_cancel_cb() (see page 13-100)

- tr_cond_cb() (see page 13-101)

- tr_state_cb() (see page 13-102)

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

tr_iterate() 13

tr_iterate() iteratively processes all events starting at the current position through
the end of the data set. For each event, user-defined callback functions registered with
tr_cond_cb() or tr_state_cb() will be invoked as required.

SYNTAX

extern int tr_iterate (tr_t t);

PARAMETERS

t data set handle

RETURN VALUES

Returns zero on success and non-zero if an error occurs. Currently, the only error is
to reach the memory limit specified on the tr_open_stream() call if the input
source is streaming data.

See “Callback Interfaces” on page 13-99 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_cb()” on page 13-101

• “tr_state_cb()” on page 13-102

• “tr_open_stream()” on page 13-18
13-99

NightTrace RT User’s Guide
tr_halt() 13

tr_halt() halts the iteration process, causing tr_iterate() to return.

SYNTAX

extern void tr_halt (tr_t t);

PARAMETERS

t data set handle

See “Callback Interfaces” on page 13-99 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_iterate()” on page 13-99

tr_cancel_cb() 13

tr_cancel_cb() cancels the specified callback.

SYNTAX

extern void tr_cancel_cb (tr_t t,
 tr_cb_t cb);

PARAMETERS

t data set handle

cb handle of the callback to be cancelled

See “Callback Interfaces” on page 13-99 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cb_t” on page 13-3
13-100

Using the NightTrace Analysis API
tr_cond_cb() 13

tr_cond_cb() registers a user-defined callback function which will be iteratively
called for every event that satisfies the specified condition.

SYNTAX

extern tr_cb_t tr_cond_cb (tr_t t,
 tr_cond_t cond,
 tr_cond_cb_func_t func,
 void * context);

PARAMETERS

t data set handle

cond handle of the condition that must be satisfied in order for the
callback function to be called

func function to be called if the given condition is satisfied for a par-
ticular event

context user defined value which is passed to the specified callback
function

RETURN VALUES

Returns an opaque handle which identifies the callback; returns TR_NO_CB if the
specified arguments are invalid or there is insufficient memory available to register
the callback function.

See “Callback Interfaces” on page 13-99 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_cond_t” on page 13-5

• “tr_cond_cb_func_t” on page 13-4

• “tr_cb_t” on page 13-3
13-101

NightTrace RT User’s Guide
tr_state_cb() 13

tr_state_cb() registers a user-defined callback function which will be iteratively
invoked for every event that affects the given state in the manner specified.

SYNTAX

extern tr_cb_t tr_state_cb (tr_t t,
 tr_state_t state,
 tr_state_action_t action,
 tr_state_cb_func_t func,
 void * context);

PARAMETERS

t data set handle

state handle of the state

action specifies the manner in which the given function will be called
(see “tr_state_action_t” on page 13-6)

func function which will be iteratively invoked for every event that
affects the given state in the specified manner

context user defined value which is passed to the specified callback
function

RETURN VALUES

Returns an opaque handle which identifies the callback; returns TR_NO_CB if the
specified arguments are invalid or there is insufficient memory available to register
the callback function.

See “Callback Interfaces” on page 13-99 for related functions.

See “Functions” on page 13-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 13-8

• “tr_state_t” on page 13-7

• “tr_state_action_t” on page 13-6

• “tr_state_cb_func_t” on page 13-6

• “tr_cb_t” on page 13-3
13-102

Reference
Part IV - Reference

Part IV Reference

Appendix A NightStar Licensing ... A-1

Appendix B Kernel Dependencies ... B-1

Appendix C NightTrace Logging API Examples ... C-1

Appendix D NightTrace Analysis API Examples .. D-1

Appendix E Answers to Common Questions ..E-1

Appendix F Glossary ...F-1

NightTrace RT User’s Guide

A
Appendix ANightStar Licensing

A
A
A

NightStar RT uses the NightStar License Manager (NSLM) to control access to the Night-
Star RT tools.

License installation requires a licence key provided by Concurrent.The NightStar RT tools
request a licence (see “License Requests” on page A-2) from a license server (see
“License Server” on page A-2).

Two license modes are available, fixed and floating, depending on which product option
you purchased. Fixed licenses can only be served to NightStar RT users from the local sys-
tem. Floating licenses may be served to any NightStar RT user on any system on a net-
work.

Tools are licensed per system, per concurrent user. A single license is shared among any or
all of the NightStar RT tools for a particular user on a particular system. The intent is to
allow n developers to fully utilize all the tools at the same time while only requiring n
licenses. When operating the tools in remote mode, where a tool is launched on a local
system but is interacting with a remote system, licenses are required only from the host
system.

You can obtain a license report which lists all licenses installed on the local system, cur-
rent usage, and expiration date for demo licenses (see “License Reports” on page A-3).

The default configuration includes a strict firewall which interferes with floating licenses.
See “Firewall Configuration for Floating Licenses” on page A-3 for information on han-
dling such configurations.

See “License Support” on page A-4 for information on contacting Concurrent for addi-
tional assistance with licensing issues.

License Keys 1

Licenses are granted to specific systems to be served to either local or remote clients,
depending on the license model, fixed or floating.

License installation requires a license key provided by Concurrent. To obtain a license
key, you must provide your system identification code. The system identification code is
generated by the nslm_admin utility:

nslm_admin --code

System identification codes are dependent on system configurations. Reinstalling Linux
on a system or replacing network devices may require you to obtain new license keys.

To obtain a license key, use the following URL:
A-1

NightTrace RT User’s Guide
http://www.ccur.com/NightStarRTKeys

Provide the requested information, including the system identification code. Your license
key will be immediately emailed to you.

Install the license key using the following command:

nslm_admin --install=xxxx-xxxx-xxxx-xxxx-xxxx

where xxxx-xxxx-xxxx-xxxx-xxxx is the key included in the license acknowledgment email.

License Requests 1

By default, the NightStar RT tools request a license from the local system. If no licenses
are available, they broadcast a license request on the local subnet associated with the sys-
tem’s hostname.

You can control the license requests for an entire system using the /etc/nslm.config
configuration file.

By default, the /etc/nslm.config file contains a line similar to the following:

:server @default

The argument @default may be changed to a colon-separated list of system names, system
IP addresses, or broadcast IP addresses. Licenses will be requested from each of the enti-
ties found in the list, until a license is granted or all entries in the list are exhausted.

For example, the following setting prevents broadcast requests for licenses, by only speci-
fying the local system:

:server localhost

The following setting requests a license from server1, then server2, and then a
broadcast request if those fail to serve a license:

:server server1:server2:192.168.1.0

Similarly, you can control the license requests for individual invocations of the tools using
the NSLM_SERVER environment variable. If set, it must contain a colon-separated list of
system names, system IP addresses, or broadcast IP addresses as described above. Use of
the NSLM_SERVER environment variable takes precedence over settings defined in
/etc/nslm.config.

License Server 1

The NSLM license server is automatically installed and configured to run when you install
NightStar RT.
A-2

http://www.ccur.com/NightStarRTKeys

NightStar Licensing
The nslm service is automatically activated for run levels 2, 3, 4, and 5. You can check on
these settings by issuing the following command:

/sbin/chkconfig --list nslm

In rare instances, you may need to restart the license server via the following command:

/sbin/service nslm restart

See nslm(1) for more information.

License Reports 1

A license report can be obtained using the nslm_admin utility.

nslm_admin --list

lists all licenses installed on the local system, current usage, and expiration date (for demo
licenses). Use of the --verbose option also lists individual clients to which licenses are
currently granted.

Adding the --broadcast option will list this information for all servers that respond to
a broadcast request on the local subnet associated with the system’s hostname.

See nslm_admin(1) for more options and information.

Firewall Configuration for Floating Licenses 1

RedHawk does not support a firewall configuration by default, because iptables support is
disabled. However, it is possible to build a custom kernel with iptables support enabled. If
that is done, and floating licenses are used, the iptables firewall rules must be configured
to allow the license requests and responses to pass.

If the system with iptables support and firewall rules is serving licenses, then the firewall
rules must be arranged to allow license requests on UDP port 25517 and TCP port 25517
from any systems that will make license requests. For example, in a simple firewall, rules
like the following, inserted before any DROP or REJECT rules, might work:

iptables -A INPUT -p udp -m udp -s subnet/mask --dport 25517 -j ACCEPT
iptables -A INPUT -p tcp -m tcp -s subnet/mask --dport 25517 -j ACCEPT

If the system with iptables support and firewall rules is running NightStar RT tools and
receiving floating licenses, then the firewall rules must be arranged to allow license
responses on UDP port 25517 from any system serving licenses. For example, in a simple
firewall, rules like the following, inserted before any DROP or REJECT rules, might work:

iptables -A INPUT -p udp -m udp -s subnet/mask --sport 25517 -j ACCEPT
A-3

NightTrace RT User’s Guide
License Support 1

For additional aid with licensing issues, contact the Concurrent Software Support Center
at our toll free number 1-800-245-6453. For calls outside the continental United States, the
number is 1-954-283-1822. The Software Support Center operates Monday through Fri-
day from 8 a.m. to 5 p.m., Eastern Standard Time.

You may also submit a request for assistance at any time by using the Concurrent Com-
puter Corporation web site at http://www.ccur.com/isd_support_contact.asp or by send-
ing an email to support@ccur.com.
A-4

http://www.ccur.com/isd_support_contact.asp
mailto:support@ccur.com

B
Appendix BKernel Dependencies

A
A
A

Concurrent’s RedHawk kernel provides features and performance gains that are critical
for the full operation of the NightStar RT tools.

The NightStar RT tools can operate in a host-only mode on Red Hat systems without Con-
current’s RedHawk kernel, cross-targeting to RedHawk systems. Additionally, the Night-
Star RT tools can function on Red Hat systems without the RedHawk kernel, but will lack
the numerous advantages afforded by running with it.

The following sections describe the additional functionality and capabilities of the Night-
Star RT tools when running Concurrent’s RedHawk kernel.

Advantages for NightView 2

The following advantages are afforded NightView when Concurrent’s RedHawk kernel is
running:

• Application speed conditions

Provides “execution-speed” patches, conditions, and ignore counts.

• Hot operations

Users of NightView gain the ability to read and write to a particular process without
having to stop it. Thus, all eventpoints can be applied and modified during applica-
tion program execution without stopping the process. User variables also can be
read and modified without stopping the process.

• Signal handling

Allows NightView to pass signals directly to a particular process, avoiding context
switching.

NOTE

NightView may not operate at all on older versions of Red Hat
without the RedHawk kernel.
B-1

NightTrace RT User’s Guide
Advantages for NightTrace 2

The following advantage is afforded NightTrace when Concurrent’s RedHawk tracing
kernel is running:

• Kernel tracing

Users of NightTrace gain the ability to obtain kernel trace data and combine that
with user trace data. Kernel tracing is an incredibly powerful feature that not only
provides insight into the operating system kernel but also provides useful informa-
tion relating to the execution of user applications.

The RedHawk kernel is provided in three flavors:

• Tracing

• Debug

• Plain

The Tracing and Debug flavors provide the features required for NightTrace kernel trac-
ing. These kernels can be selected at boot-time from the boot-loader menu.

Advantages for NightProbe 2

The following advantages are afforded NightProbe when Concurrent’s RedHawk kernel is
running:

• Minimal intrusion

Allows NightProbe to read and write variables without stopping the process for each
sample or write operation.

• Sampling performance

Allows NightProbe to use direct memory fetches for data sampling (as opposed to
programmed I/O) which is important for high-rate data acquisition.

• Concurrent debugging/probing

Allows NightProbe to probe programs already under the control of a debugger or
another NightProbe session.

• PCI Device probing

Allows NightProbe to probe PCI device memory via the Base Address Register
(BAR) file system.
B-2

Kernel Dependencies
Advantages for NightTune 2

The following advantage is afforded NightTune when Concurrent’s RedHawk kernel is
running:

• Context switch rate

Allows NightTune user to display the context switch counts per CPU instead of for
the overall system.

• CPU shielding

Individual CPUs can be shielded from interrupts and processes allowing CPUs to be
dedicated solely to specific interrupts and processes that are bound to the CPU.

• CPU sibling interference

Individual CPUs can be marked down to avoid interfering with hyperthreaded sib-
ling CPUs and dual-core sibling CPUs. Hyperthreaded CPUs share all the resources
of their sibling CPU. Dual-core CPUs share the CPU cache and a path to memory
with their sibling CPU.

Advantages for NightSim 2

The following advantage is afforded NightSim when Concurrent’s RedHawk kernel is
running:

• Scheduling target

Allows NightSim to schedule processes on the system via Concurrent’s Fre-
quency-Based Scheduler.
B-3

NightTrace RT User’s Guide
B-4

C
Appendix CNightTrace Logging API Examples

2

This chapter provides several examples using the NightTrace Logging API.

Single Threaded C Example 3

This example uses demonstrates a minimalist approach to tracing, foregoing any error
checking and logging very simple events.

#include <ntrace.h>

main()
{
 volatile double x = 0.0;
 int i,j;

 trace_begin ("data",0);

 for (j=0; j<100; ++j) {
 trace_event (1);
 for (i=0; i<1000; ++i) {
 x = x * x;
 }
 trace_event (2);
 }
}

The call to trace_begin() initializes tracing with default parameters.

We call trace_event() with different event identifiers immediately before and after our
application’s workload, represented by the inner loop.

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

$ cc -g file.c -lntrace
$ ntraceud data; ./a.out; ntraceud -q data

Using the command line summary option to ntrace, print a summary of each execution of
the outer loop:

$ ntrace --summary=st:1-2 data
===
Summary: States starting with event 1, ending with event 2:

State Summary Results
C-1

NightTrace RT User’s Guide
=====================

Number of states found: 100

Maximum state duration: 0.000027722 at offset: 79
Minimum state duration: 0.000012817 at offset: 5
Average state duration: 0.000014569
Total of state durations: 0.001456897

Number of state gaps found: 100

Maximum state gap: 0.000000430 at offset: 3
Minimum state gap: 0.000000303 at offset: 13
Average state gap: 0.000000306
Total of state gaps: 0.000030604
C-2

NightTrace Logging API Examples
Multi-Threaded C++ Example 3

This example uses demonstrates using NightTrace event logging from multiple threads.

#include <stdlib.h>
#include <ntrace.h>

#define Start 100
#define End 200

volatile int done = 0;

int work (int input)
{
 // do something
 return input;
}

void *
thread_a (void * ptr)
{
 int i = 0;
 int result;
 trace_register_thread();
 trace_open_thread ("romeo");
 while (!done) {
 trace_event_arg (Start, i);
 result = work(i++);
 trace_event_arg(End, result);
 }
}

void *
thread_b (void * ptr)
{
 int i=9999999;
 int result;
 trace_register_thread();
 trace_open_thread ("juliet");
 while (!done) {
 trace_event_arg (Start, i);
 result = work(i--);
 trace_event_arg(End, result);
 }
}

int
main (int argc, char * argv[])
{
 pthread_t thread;
 pthread_attr_t attr;
 int status;

 status = trace_begin ("data",NULL);
 switch (status) {
 case NTLISTEN:
 printf ("No daemon is listening -- “
 “proceeding in case one shows up\n");
 break;
 case NTNOERROR:
 break;
 default:
C-3

NightTrace RT User’s Guide
 printf ("An error occurred during ntrace initialization (%d)\n",
 status);
 exit(1);
 }

 pthread_attr_init(&attr);
 pthread_create (&thread, &attr, thread_a, NULL);

 pthread_attr_init(&attr);
 pthread_create (&thread, &attr, thread_b, NULL);
 sleep(1);

 done = 1;
}

The call to trace_begin() initializes tracing with default parameters.

Immediately within the thread routines, each thread registers itself with the NightTrace
API via a trace_register_thread() call, and then identifies itself with a unique
name via the trace_open_thread() call.

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

$ cc -g file.c -lntrace_thr -lpthread
$ ntraceud data; ./a.out; ntraceud -q data

NOTE

Note the use of the thread-aware version of the NightTrace log-
ging API library, -lntrace_thr. This is required for use with
multi-threaded programs if you want to be able to distinguish
between individual threads in trace events. See “Threads and
Logging” on page 2-26 for more information).

The following command invokes ntrace to graphically view the events. A customized
page is automatically built which distinguishes events between the two threads: romeo
and juliet:

$ ntrace data
C-4

NightTrace Logging API Examples
Figure 1-1. Automatically Generated Data Display Page
C-5

NightTrace RT User’s Guide
Fortran Example 3

This example uses demonstrates a simple Fortran program logging a trace event.

 program ftrace

 include "/usr/include/ntrace_.h"

 integer void

 void = trace_start("data")
 void = trace_open_thread("fmain")

 do 10 i=1,10
 void = trace_event_arg(1,i)
10 continue

 void = trace_end()

 end

The call to trace_start() initializes tracing with default parameters.

We call trace_event_arg() with the loop iterator for each iteration.

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

$ g77 -g file.c -lntrace
$ ntraceud data; ./a.out; ntraceud -q data

Using the command line listing option to ntrace, we see the values of the iterator as event
points are logged:

$ ntrace --listing data
 0: cpu=?? 1 pid=a.out thr=fmain time=0.000000000s arg1=0x1
 1: cpu=?? 1 pid=a.out thr=fmain time=0.000002481s arg1=0x2
 2: cpu=?? 1 pid=a.out thr=fmain time=0.000003103s arg1=0x3
 3: cpu=?? 1 pid=a.out thr=fmain time=0.000003536s arg1=0x4
 4: cpu=?? 1 pid=a.out thr=fmain time=0.000003976s arg1=0x5
 5: cpu=?? 1 pid=a.out thr=fmain time=0.000004386s arg1=0x6
 6: cpu=?? 1 pid=a.out thr=fmain time=0.000004882s arg1=0x7
 7: cpu=?? 1 pid=a.out thr=fmain time=0.000005302s arg1=0x8
 8: cpu=?? 1 pid=a.out thr=fmain time=0.000005820s arg1=0x9
 9: cpu=?? 1 pid=a.out thr=fmain time=0.000006294s arg1=0xa
 ...
C-6

NightTrace Logging API Examples
Rare Occurrence Example 3

This example uses demonstrates how one might use buffer-wrap mode to catch a rare
occurrence of bug.

#include <ntrace.h>
#include <time.h>

void
incredibly_rare_event (void)
{
 trace_event(2);
 time_t t = time(0);
 printf ("a.out: Badness occurred at %s", asctime(localtime(&t)));
 trace_flush();
}

main()
{
 volatile double x = 0.0;
 int j;
 unsigned i = 0;

 trace_begin ("data",0);
 for (;;) {
 trace_event_arg (1,i);
 for (j=0; j<100; ++j) x = x * x;
 if ((++i % 10000000) == 0) {
 incredibly_rare_event();
 }
 }
}

The call to trace_begin() initializes tracing with default parameters.

We call trace_event_arg() with the loop iterator for each iteration of the outer loop to
simulate logging useful data.

When the process detects something has gone wrong, it logs a new trace event and then
flushes the trace buffers with a call to trace_flush().

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

$ cc -g file.c -lntrace
$ ntraceud --bufferwrap data
$./a.out &
a.out: Badness occurred at Fri Oct 7 18:00:26 2005
a.out: Badness occurred at Fri Oct 7 23:12:55 2005
$ ntraceud --quit-now data
$ jobs
[1] + Running a.out
a.out: Badness occurred at Sat Oct 8 02:45:01 2005
a.out: Badness occurred at Sat Oct 8 08:21:17 2005
C-7

NightTrace RT User’s Guide
The program continues to execute despite the detection of the condition, but on each
detection, the history of events that were still in the trace shared memory buffers are writ-
ten to the output file.

The latter invocation of ntraceud to stop the daemon, indicates is should not wait for
the logging application to complete.

We can now analyze the data from the two occurrences of the problematic event.

Alternatively, we could have started the program without an ntraceud daemon running,
and subsequently used the ntrace, the NightTrace GUI to start a daemon, and immedi-
ately analyze the trace data as more data is being collected.
C-8

D
Appendix DNightTrace Analysis API Examples

3

The following programs are given as examples of how to use the NightTrace Analysis
Application Programming Interface (see “Using the NightTrace Analysis API” on page
13-1).

NOTE

The source f i l e s fo r these p rograms a re ins ta l l ed in
/usr/lib/NightTrace/examples.

- list (see “list” on page D-2)

This program simply lists each NightTrace event using a simple main loop to posi-
tion to the next event.

- search (see “search” on page D-4)

This program utilizes the callback features of the API to locate and describe all
events which satisfy a specified condition.

- watchdog (see “watchdog” on page D-7)

This program illustrates how to monitor a certain condition in real-time and then act
upon it accordingly.

- ptime (see “ptime” on page D-10)

This program illustrates how to use the NightTrace GUI to export complex condi-
tions and states to a source file which uses the API.

- browse (see “browse” on page D-13)

This program contains a collection of code segments which might be useful for ref-
erence.

- detect (see “detect” on page D-24)

This program monitors live kernel trace data looking for a user-specified event in
the form of a NightTrace expression.
D-1

NightTrace RT User’s Guide
list 4

Usage

./list trace_data_file

This program simply lists each NightTrace event using a simple main loop to position to
the next event.

See “NightTrace Analysis API Examples” on page D-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface

list.c 4

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ntrace_analysis.h>

// Simple example to list all events in a trace data file

// Usage: ./list data_file

static void print (tr_t t, tr_offset_t offset);

int
main (int argc, char * argv[])
{
 tr_t t;
 tr_string_node_t * list;
 tr_offset_t offset;
 int i;
 int errs;

 if (argc != 2) {
 printf ("Usage: list data_file\n");
 exit(1);
 }

 t = tr_init();
 tr_open_file(t,argv[1]);

 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 exit(1);
 }
D-2

NightTrace Analysis API Examples

 for (;;) {
 offset = tr_next_event(t);
 if (offset == TR_EOF) break;
 print(t, offset);
 }

 tr_close(t);
 tr_destroy(&t);
}

static
void
print (tr_t t, tr_offset_t offset)
{
 int i;

 printf ("%5d pid=%5d id=%4d %8.9f nargs=%1d",
 offset,
 tr_pid(t),
 tr_id(t),
 tr_time(t),
 tr_nargs(t));
 for (i=1; i<=tr_nargs(t); ++i) {
 printf (" %5d", tr_arg_int(t,i));
 }
 printf ("\n");
}

D-3

NightTrace RT User’s Guide
search 4

Usage

./search trace_data_file "NightTrace_Expression"

This program utilizes the callback features of the API to locate and describe all events
which satisfy the specified condition.

The NightTrace_Expression is a valid NightTrace expression (see “NightTrace allows you
to use expressions to aid in the analysis of trace data.” on page 11-1) enclosed by double
quotes.

The search program builds a condition object and assigns the specified expression to
that condition. It then registers a callback to the print function for every event that sat-
isfies the condition. It then invokes the iterate function to process the entire
trace_data_file.

To call the search program with a trace_data_file named my_trace_data and the
NightTrace_Expression:

num_args>1 && arg2==0

you would issue the following command:

./search my_trace_data "num_args>1 && arg2==0"

See “NightTrace Analysis API Examples” on page D-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface

search.c 4

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ntrace_analysis.h>

// Simple example to search for all events in a trace data file
// which satisfy the specified condition.

// Usage: ./search data_file "expression"

// Example: ./search data_file "num_args>1 && arg2 == 1"

static void print (tr_t, tr_cond_t c, tr_offset_t, int, void *, int *);

int
main (int argc, char * argv[])
D-4

NightTrace Analysis API Examples
{
 tr_t t;
 tr_string_node_t * list;
 tr_offset_t offset;
 tr_cond_t cond;
 int i;
 int errs;

 if (argc < 3) {
 printf ("Usage: search data_file \"expression\"\n");
 exit(1);
 }

 // Initialize the API and open the input data file
 t = tr_init();
 tr_open_file(t,argv[1]);

 // Create a condition using the specified expression and
 // register a callback for it.
 cond = tr_cond_create(t,"search");
 tr_cond_expr_and(t,cond,argv[2]);
 tr_cond_cb(t,cond,print,0);

 // Ensure all is copasetic
 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 exit(1);
 }

 // Process all events
 tr_iterate(t);

 tr_close(t);
}

static
void
print (tr_t t,
 tr_cond_t c,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable)
{
 int i;

 printf ("%5d pid=%5d id=%4d %8.9f nargs=%1d",
 offset,
 tr_pid(t),
 tr_id(t),
 tr_time(t),
 tr_nargs(t));
 for (i=1; i<=tr_nargs(t); ++i) {
 printf (" %5d", tr_arg_int(t,i));
 }
 printf ("\n");
}

D-5

NightTrace RT User’s Guide
D-6

NightTrace Analysis API Examples
watchdog 4

Usage

./watchdog cpu_mask

This program illustrates how to monitor a certain condition in real-time and then act upon
it accordingly.

In this case, the input to the program is the output of a NightTrace kernel daemon. The
program watches for any context switches on the CPU specified in cpu_mask.

For simplicity, this program only lists the time at which the context switch occurred and
the process being switched in.

This program may be invoked with the following command:

ntracekd --stream /tmp/handle | ./watchdog 1

or it can be launched from the NightTrace GUI as part of a streaming kernel daemon defi-
nition (via the setting of the Stream checkbox on the General page of the Daemon
Definition dialog (see “Stream” on page 7-64)).

See “NightTrace Analysis API Examples” on page D-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface

watchdog.c 4

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <ntrace_analysis.h>

// Example watchdog program; detect context switches on
// shielded CPU

// Usage: ./watchdog cpu_mask

// stdin is assumed to be the output of ntracekd (or watchdog
// was launched from the NightTrace GUI which set stdin to
// daemon output).

static void print (tr_t, tr_cond_t c, tr_offset_t, int, void *, int *);

int
main (int argc, char * argv[])
{
 tr_t t;
D-7

NightTrace RT User’s Guide
 tr_string_node_t * list;
 tr_offset_t offset;
 tr_cond_t cond;
 int i;
 int cpu;
 int errs;

 if (argc != 2) {
 printf ("Usage: ntracekd --stream handle | watchdog cpu_mask\n");
 exit(1);
 }
 if (isatty(0)) {
 printf ("error: expect stdin to be streaming data from ntracekd\n");
 exit(1);
 }
 cpu = atoi(argv[1]);
 if (cpu == 0) {
 printf ("error: cpu_mask must be a MASK of CPU bits\n");
 exit(1);
 }

 // Initialize the API
 t = tr_init();

 // Create a condition detecting context switches on specified CPU
 // and register a callback for it.
 cond = tr_cond_create(t,"switch");
 tr_cond_id(t,cond,4150);
 tr_cond_cpu(t,cond,cpu);
 tr_cond_cb(t,cond,print,0);

 // Open the input stream
 tr_open_stream(t, 0, 1024*1024*50, 0);

 // Ensure all is copasetic
 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 exit(1);
 }

 // Process all events
 tr_iterate(t);

 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 }

 tr_close(t);
}

static
void
print (tr_t t,
 tr_cond_t c,
 tr_offset_t offset,
D-8

NightTrace Analysis API Examples
 int occurrence,
 void * context,
 int * disable)
{
 int pid = tr_pid(t);
 char * name = tr_process_name(t);

 if (!name) name = "<unknown>";

 printf ("context switch: %8.9f %5d %s\n", tr_time(t), pid, name);
}

D-9

NightTrace RT User’s Guide
ptime 4

This program illustrates how to use the NightTrace GUI to export complex conditions and
states to a source file which uses the API.

Usage

./ptime kernel_trace_file

In this case, ptime.c contains the main program and the callback functions; we use the
GUI to export an initialization routine which defines the states and registers the callbacks.

A NightTrace session file, ptime.session, is provided in this directory which contains
a definition of a state called ksoftirqd.

In order to build the program ptime, you need to invoke NightTrace and export the state:

 ksoftirqd

to generate the source file export_0.c.

1. Issue the following command:

ntrace ptime.session

2. From the NightTrace menu, select the Export API Source File...
menu item.

3. Select ksoftirqd in the list.

4. Clear checkbox for Generate main() function

5. Clear checkbox for Generate callback function definitions

6. Click on Export Selected

7. Click on Close

8. From the NightTrace menu, select Exit Immediately

NOTE

Optionally, NightTrace can create a main program and callback
bodies for you as well.

The ksoftirqd state tracks when the process ksoftirqd/0 is active on CPU 0.

The ptime program simply collects the durations of each occurrence of the state and
prints the total time at the end of the program.

To generate the kernel_trace_file, issue the following command:

ntracekd --wait=5 /tmp/kernel-data
D-10

NightTrace Analysis API Examples
You may then invoke the program:

./ptime /tmp/kernel-data

See “NightTrace Analysis API Examples” on page D-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface

ptime.c 4

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ntrace_analysis.h>

// Example to calculate the amount of time the Kernel daemon
// ksoftirqd/0 spends processing on the CPU.

// The purpose of this example is to demonstrate use of the
// NightTrace GUI export feature to aid in forming conditions,
// states, and registering callbacks.

// Usage: ./ptime kernel_data_file

static double time = 0.0;

extern void tr_session_init(tr_t);

int
main (int argc, char * argv[])
{
 tr_t t;
 tr_string_node_t * list;
 tr_offset_t offset;
 tr_cond_t cond;
 int i;
 int errs;

 if (argc < 2) {
 printf ("Usage: search data_file\n");
 exit(1);
 }

 // Initialize the API and open the input data file
 t = tr_init();
 errs = tr_open_file(t,argv[1]);

 // Invoke the initialization function generated by the
 // NightTrace GUI to form string tables, conditions,
 // expressions, and register callbacks.
 if (!errs) {
D-11

NightTrace RT User’s Guide
 tr_session_init(t);
 tr_activate(t);
 }

 // Ensure all is copasetic
 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 exit(1);
 }

 // Process all events
 tr_iterate(t);

 tr_close(t);
 tr_destroy(&t);

 printf ("ksoftirqd/0 used %9.8f seconds of CPU time\n", time);
}

void
ksoftirqd_start_func (tr_t input, tr_state_t state,
 tr_offset_t offset, int occurrence,
 void * context, int * disable) {
}

void
ksoftirqd_end_func (tr_t input, tr_state_t state,
 tr_offset_t offset, int occurrence,
 void * context, int * disable) {
 tr_state_info_t info;
 tr_state_info(input,state,&info);
 time += info.duration;
}

D-12

NightTrace Analysis API Examples
browse 4

Usage

./browse [-e expression] data_file

This program contains a collection of code segments which might be useful for reference.

It implements a simple command-line oriented browser.

NOTE

The browse program is included mainly for reference; the Night-
Trace GUI is much more suitable for interactive browsing.

See “NightTrace Analysis API Examples” on page D-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface

browse.c 4

#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "ntrace_analysis.h"

// This test program implements a command-line orienter
// browser. It is provided because some of the code
// segments may be useful for reference. The NightTrace
// GUI tool is *much* more suitable for interactive browsing.

tr_t t;

static char buffer[128];
static char * _c;
static FILE * input;

#define get_line(x) \
 write (1, x, sizeof(x)); \
 _c = fgets(buffer,sizeof(buffer),input); \
 _c[strlen(_c)-1] = '\0'

static
void
print (tr_offset_t offset)
{
 int i;
D-13

NightTrace RT User’s Guide
 double time = tr_time(t);
 char * process = tr_process_name(t);

 if (process && process[0]) {
 printf ("%5d pid=%s %3d %8.9f %1d", offset, process, tr_id(t), time,
tr_nargs(t));
 } else {
 printf ("%5d pid=%d %3d %8.9f %1d", offset, tr_pid(t), tr_id(t), time,
tr_nargs(t));
 }
 for (i=1; i<=tr_nargs(t); ++i) {
 printf (" %5d", tr_arg_int(t,i));
 }
 printf ("\n");
}

static
void
print_event (tr_offset_t offset)
{
 int i;
 double time = tr_time_(t,offset);

 printf ("%5d %5d %3d %8.9f %1d", offset, tr_pid_(t,offset),
 tr_id_(t,offset), time, tr_nargs_(t,offset));
 for (i=1; i<=tr_nargs_(t,offset); ++i) {
 printf (" %5d", tr_arg_int_(t,i,offset));
 }
 printf ("\n");
}

typedef enum { CMD_LIST,
 CMD_NEXT,
 CMD_PREV,
 CMD_SEEK,
 CMD_SEARCH,
 CMD_COPY_FILE,
 CMD_STATE,
 CMD_CONDITION,
 CMD_CALLBACK,
 CMD_ITERATE,
 CMD_REWIND,
 CMD_QUIT,
 CMD_UNKNOWN}
 commands;

static commands last_cmd = CMD_QUIT;

static int cond1 (tr_t t, tr_offset_t offset, void * v)
{
 return tr_nargs_(t,offset) > 0 && tr_arg_int_(t,1,offset) > 10;
}
static int cond2 (tr_t t, tr_offset_t offset, void * v)
{
 return tr_time_(t,offset) < 0.03712;
}
static int cond3 (tr_t t, tr_offset_t offset, void * v)
{
 return tr_nargs_(t,offset) > 0 && tr_arg_int_(t,1,offset) > 10;
D-14

NightTrace Analysis API Examples
}
static int cond4 (tr_t t, tr_offset_t offset, void * v)
{
 return tr_nargs_(t,offset) == 4;
}
static int cond5 (tr_t t, tr_offset_t offset, void * v)
{
 return tr_id_(t,offset) % 2 == 0;
}

static
void
event_cb (tr_t t, tr_cond_t c, tr_offset_t offset,
 int count, void * context, int * disable)
{
 printf ("event callback function\n");
 print(offset);
}

static
void
state_cb (tr_t t, tr_state_t s, tr_offset_t offset, int count, void * context,
 int * disable)
{
 tr_state_info_t info;
 print (offset);
 printf ("state callback function\n");
 tr_state_info (t, s, &info);
 printf (" active = %d\n", tr_state_active(t,s));
 printf (" start_offset = %d\n", info.start_offset);
 printf (" end_offset = %d\n", info.end_offset);
 printf (" gap = %12.9fs\n", info.gap);
 printf (" duration = %12.9fs\n", info.duration);
}

static
commands
get_cmd (void)
{
 get_line(": ");

 if (strcmp(buffer,"") == 0) {
 return last_cmd;
 } else if (!strcmp(buffer,"list")) {
 return last_cmd=CMD_LIST;
 } else if (!strcmp(buffer,"next")) {
 return last_cmd=CMD_NEXT;
 } else if (!strcmp(buffer,"prev")) {
 return last_cmd=CMD_PREV;
 } else if (!strcmp(buffer,"seek")) {
 return last_cmd=CMD_SEEK;
 } else if (!strcmp(buffer,"search")) {
 return last_cmd=CMD_SEARCH;
 } else if (!strcmp(buffer,"copy_file")) {
 return last_cmd=CMD_COPY_FILE;
 } else if (!strcmp(buffer,"iterate")) {
 return last_cmd=CMD_ITERATE;
 } else if (!strcmp(buffer,"state")) {
D-15

NightTrace RT User’s Guide
 return last_cmd=CMD_STATE;
 } else if (!strcmp(buffer,"condition")) {
 return last_cmd=CMD_CONDITION;
 } else if (!strcmp(buffer,"callback")) {
 return last_cmd=CMD_CALLBACK;
 } else if (!strcmp(buffer,"rewind")) {
 return last_cmd=CMD_REWIND;
 } else if (!strcmp(buffer,"quit")) {
 return last_cmd=CMD_QUIT;
 } else {
 return last_cmd=CMD_UNKNOWN;
 }
}

static
void
do_search (void)
{
 tr_cond_t c;
 tr_dir_t dir;
 tr_offset_t o;

 get_line ("forward or backward (f/b): ");
 if (buffer[0] == 'b') {
 dir = tr_backward;
 } else {
 dir = tr_forward;
 }

 get_line ("enter name of condition to search for: ");
 c = tr_cond_find(t,buffer);
 if (c == TR_NO_COND) {
 printf ("could not locate condition \"%s\"\n", buffer);
 return;
 }
 o = tr_search (t, dir, c);
 if (o == TR_EOF) {
 printf ("Event Not Found\n");
 } else {
 print_event(o);
 }
}

static char * expression;

static
void
prime (void)
{
 tr_cond_t c1, c2, c3, c4, c5;
 char * err;

 c1 = tr_cond_create(t,"_cond1");
 tr_cond_func_and(t,c1,cond5,0);

 c2 = tr_cond_create(t,"_cond2");
 tr_cond_func_and(t,c2,cond4,0);

 c3 = tr_cond_create(t,"_cond3");
D-16

NightTrace Analysis API Examples
 tr_cond_id_range (t, c3, 50, 60);

 c4 = tr_cond_create(t,"_test");
 err = tr_cond_expr_and(t,c4,expression);
 if (err) {
 printf ("%s\n", err);
 }

 c5 = tr_cond_create(t,"_cond5");
 tr_cond_pid_name(t,c5,"foo");

 tr_activate(t);

#if 0
 {
 char * errs;
 int i;

 tr_error_clear(t);
 tr_session_init(t);
 errs = tr_error_check(t,&list);
 if (errs) {
 printf ("tr_session_init() failed:\n");
 }
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 }
#endif
}

static
void
def_state (void)
{
 tr_state_t s;
 int error;
 int i;
 int low[2], high[2];
 tr_cond_t cond[2];

 for (i=0; i<2; ++i) {
 const char * prompt = (i ? "end: " : "start: ");
 write (1, prompt, strlen(prompt));
 get_line ("enter low bound of id range: ");
 low[i] = atoi(buffer);
 get_line ("enter high bound of id range: ");
 high[i] = atoi(buffer);
 }

 for (i=0; i<2; ++i) {
 const char * prompt = (i ? "end: " : "start: ");
 write (1, prompt, strlen(prompt));
 get_line ("enter condition name or <enter> for none: ");
 if (buffer[0] == '\0') {
 cond[i] = TR_NO_COND;
 } else {
 cond[i] = tr_cond_find(t,buffer);
 if (cond[i] == TR_NO_COND) {
 printf ("no such condition\n");
D-17

NightTrace RT User’s Guide
 return;
 }
 }
 }

 get_line ("enter name of state to be defined: ");

 s = tr_state_create (t, buffer);
 if (s == TR_NO_STATE) {
 printf ("state creation failed\n");
 return;
 }

 error = tr_state_start_id_range(t,s,low[0],high[0]);
 error |= tr_state_end_id_range(t,s,low[1],high[1]);
 if (cond[0] != TR_NO_COND) {
 tr_state_start_cond(t,s,cond[0]);
 }
 if (cond[1] != TR_NO_COND) {
 tr_state_end_cond(t,s,cond[1]);
 }
 if (error) {
 printf ("configuration of state failed\n");
 return;
 }

 tr_activate(t);

 printf ("state \"%s\" has been successfully configured\n", buffer);
}

static
void
def_condition (void)
{
 tr_cond_t c;
 int low, high;
 int cpu;
 int pid;
 int error;
 int and_;
 tr_cond_func_t func;

 get_line ("enter low bound of id range or <enter> for none: ");
 low = atoi(buffer);
 get_line ("enter high bound of id range or <enter> for none: ");
 high = atoi(buffer);
 get_line ("enter cpu bias or <enter> for none: ");
 cpu = atoi(buffer);
 get_line ("enter pid or <enter> for none: ");
 pid = atoi(buffer);
 get_line ("enter name of condition to be defined: ");

 c = tr_cond_create (t, buffer);
 if (c == TR_NO_COND) {
 printf ("condition creation failed\n");
 return;
 }
D-18

NightTrace Analysis API Examples
 error = 0;

 if (low) error |= tr_cond_id_range(t,c,low,high);
 if (cpu) tr_cond_cpu(t,c,cpu);
 if (pid) error |= tr_cond_pid(t,c,pid);

 for (;;) {
 get_line ("enter \"and\", \"or\", or <enter> for function conditions: ");
 if (buffer[0] == '\0') break;
 else if (!strcmp(buffer,"and")) and_ = 1;
 else if (!strcmp(buffer,"or")) and_ = 0;
 else {
 printf ("illegal response\n");
 return;
 }
 get_line ("enter condition callback function or expression: ");
 func = NULL;
 if (!strcmp(buffer,"cond1")) { func = cond1; }
 else if (!strcmp(buffer,"cond2")) { func = cond2; }
 else if (!strcmp(buffer,"cond3")) { func = cond3; }
 else if (!strcmp(buffer,"cond4")) { func = cond4; }
 else if (!strcmp(buffer,"cond5")) { func = cond5; }
 else func = NULL;
 if (func == NULL) {
 char * err;
 if (and_)
 err = tr_cond_expr_and(t,c,buffer);
 else
 err = tr_cond_expr_or(t,c,buffer);
 if (err) {
 printf ("invalid expression:\n%s\n",err);
 error = 1;
 }
 } else {
 if (and_) {
 error |= tr_cond_func_and(t,c,func,0);
 } else {
 error |= tr_cond_func_or(t,c,func,0);
 }
 }
 }

 if (error) {
 printf ("configuration of condition failed\n");
 } else {
 printf ("condition has been successfully configured\n");
 }

 tr_activate(t);
}

static
void
destroy_callback (void)
{
 tr_cb_t id;

 get_line ("enter callback id to cancel: ");
 id = atoi(buffer);
D-19

NightTrace RT User’s Guide
 printf ("cancelling callback with ID %d\n", id);
 tr_cancel_cb (t, id);
}

static
void
def_callback (void)
{
 tr_cond_t c;
 tr_state_t s;
 int is_state;
 int id;
 tr_state_action_t a;

 get_line ("create or destroy a callback? (c/d) [c]: ");
 if (buffer[0] == 'd') {
 destroy_callback();
 return;
 }

 get_line ("state or condition callback? (s/c): [c]: ");
 is_state = buffer[0] == 's';

 if (is_state) {
 get_line ("enter state callback trigger: start, end, active, inactive: ");
 if (!strcmp(buffer,"start")) a = tr_state_start_action;
 else if (!strcmp(buffer,"end")) a = tr_state_end_action;
 else if (!strcmp(buffer,"active")) a = tr_state_active_action;
 else if (!strcmp(buffer,"inactive")) a = tr_state_inactive_action;
 else {
 printf ("illegal response\n");
 return;
 }
 get_line ("enter state name: ");
 s = tr_state_find(t,buffer);
 if (s == TR_NO_STATE) {
 printf ("unable to locate state \"%s\"\n", buffer);
 return;
 }
 id = tr_state_cb (t, s, a, state_cb, 0);
 } else {
 get_line ("enter condition name: ");
 c = tr_cond_find(t,buffer);
 if (c == TR_NO_COND) {
 printf ("unable to locate condition \"%s\"\n", buffer);
 return;
 }
 id = tr_cond_cb (t, c, event_cb, 0);
 }

 if (id == TR_NO_CB) {
 printf ("callback registration failed\n");
 } else {
 printf ("callback for %s \"%s\" was successfully registered as id %d\n",
 (is_state ? "state" : "condition"), buffer, id);
 }
}

int
D-20

NightTrace Analysis API Examples
main (int argc, char * argv[])
{
 int status;
 int i;
 int done = 0;
 int arg = 1;
 int streaming = 0;
 int cmd;
 tr_offset_t o;
 char buffer[100];

 expression = "true";

 for (;;) {
 if (argc < 2) {
 printf ("usage: %s [options] trace_data_file\n", argv[0]);
 printf ("options:\n"
 " -e expr (expr) Create an expression named \"_test\"\n"
 " using \"expr\" as the expression\n"
 "\n"
 "If \"trace_data_file\" is \"-\", then we assume stdin\n"
 "is a stream from a NightTrace daemon\n");
 exit(1);
 }
 if (argv[arg][0] == '-') {
 if (!strcmp(argv[arg],"-e")) {
 --argc;
 expression = argv[++arg];
 } else if (!strcmp(argv[arg],"-")) {
 streaming = 1;
 break;
 } else {
 argc = 0;
 }
 } else {
 break;
 }
 ++arg;
 --argc;
 }

 t = tr_init();

 if (streaming) {
 input = fopen("/dev/tty","r");
 //status = tr_open_stream(t,0,1024*1024*20, TR_STREAM_SAVE);
 status = 1;
 } else {
 input = stdin;
 status = tr_open_file(t,argv[arg]);
 }
 if (status) {
 tr_string_node_t * list;
 int errs;
 printf ("tr_open_*() failed:\n");
 errs = tr_error_check(t,&list);
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 exit(1);
D-21

NightTrace RT User’s Guide
 }

 prime();

 cmd = -1;

 while (!done) {

 switch (cmd) {

 case CMD_LIST:
 for (;;) {
 o = tr_next_event(t);
 if (o == TR_EOF) break;
 print(o);
 }
 break;

 case CMD_NEXT:
 o = tr_next_event(t);
 print(o);
 break;

 case CMD_PREV:
 o = tr_prev_event(t);
 print(o);
 break;

 case CMD_SEEK:
 printf ("Input event offset of interest: ");
 fflush (stdout);
 o = atoi(fgets(&buffer[0],sizeof(buffer),input));
 printf ("seeking to %d\n", o);
 o = tr_seek(t,o);
 print(o);
 break;

 case CMD_SEARCH:
 do_search();
 break;

 case CMD_COPY_FILE:
 {
 tr_cond_t c;
 c = tr_cond_find(t, "copy");
 if (c == TR_NO_COND) {
 printf ("you must first define a condition called \"copy\"\n");
 } else {
 get_line ("Enter output file name: ");
 if (tr_copy_input(t,buffer,c,0666)) {
 printf ("failed to write events\n");
 }
 }
 break;
 }

 case CMD_STATE:
 def_state();
 break;
D-22

NightTrace Analysis API Examples
 case CMD_CONDITION:
 def_condition();
 break;

 case CMD_CALLBACK:
 def_callback();
 break;

 case CMD_ITERATE:
 tr_iterate(t);
 break;

 case CMD_REWIND:
 (void) tr_seek(t,-1);
 break;

 case CMD_QUIT:
 done = 1;
 continue;
 //break;

 default:
 printf ("Commands:\n"
 " list\n"
 " next\n"
 " prev\n"
 " seek\n"
 " search\n"
 " copy_file\n"
 " state\n"
 " condition\n"
 " callback\n"
 " iterate\n"
 " rewind\n"
 " quit\n");
 }

 cmd = get_cmd();

 } while (!done);

 tr_close (t);
 tr_destroy (&t);

 return 0;
}

D-23

NightTrace RT User’s Guide
detect 4

Usage

./detect expression

This program monitors live kernel trace data looking for a user-specified event in the form
of a NightTrace expression. When the event is detected, it writes out a kernel trace data
file which contains the detected event as well as 500 events previous to it. It then termi-
nates.

This program illustrates how to monitor a certain condition in real-time and then save
trace data prior to and including the event when the condition was detected.

This would be useful in order to collect kernel trace data continually until some complex
event occurs - then to save the relevant kernel data for later analysis.

This program may be invoked with the following command:

 ntracekd --stream /tmp/handle | ./detect "process_name==\"ntracekd\""

or it can be launched from the NightTrace GUI as part of a streaming kernel daemon defi-
nition (via the setting of the Stream checkbox on the General page of the Daemon
Definition dialog (see “Stream” on page 7-64)).

In this case, the expression provided instructs the program to look for the first kernel event
associated with the daemon that is collecting the kernel data and sending it to our
./detect program. This example is used simply for demonstration - it is not very inter-
esting in and of itself.

A f t e r e x e c u t i n g h a s s t o p p e d , a k e r n e l t r a c e d a t a f i l e c a l l e d
copy_current_input.data has been written to the current working directory. You
can invoke ntrace on that data file to view the 500 events just prior to the first
ntracekd event:

 ntrace copy_current_input.data

NOTE

There may be fewer than 500 events saved since we may encoun-
ter ntracekd almost immediately.

See “NightTrace Analysis API Examples” on page D-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface
D-24

NightTrace Analysis API Examples
detect.c 4

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <ntrace_analysis.h>

// This program detects the first event where the expression is true
// and saves the desired number of events to the output file.

static char* detect_usage =
"Usage: \n"
"\n"
" ntracekd --stream output | ./detect 500 \"NightTrace Expression\" \n"
"\n"
" This will detect the first event where the condition is met \n"
" and copy the last 500 events prior to that event to the output \n"
" file. Tracing will be stopped at that point. \n"
"\n"
" ntracekd --stream output | ./detect --bracket 500 \"NightTrace Expression\"
\n"
"\n"
" This will detect the first event where the condition is met \n"
" and copy the 500 events prior to and after that event to the \n"
" output file. Tracing will be stopped at that point. \n"
"\n"
;

// IMPORTANT: stdin is assumed to be the output of ntracekd (or detect was
// launched from the NightTrace GUI which set stdin to daemon output).

// Callbacks
static void copy_input_range_cb
 (tr_t t,
 tr_state_t state,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable);

static void copy_current_input_cb
 (tr_t t,
 tr_state_t state,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable);

static int range = 0;

int
main (int argc, char * argv[])
D-25

NightTrace RT User’s Guide
{
 tr_t t;
 tr_cond_t user;
 tr_cond_t start;
 tr_cond_t filter;
 tr_state_t state;
 int copy_range = 0;
 int copy_current = 0;
 char option [1024];
 char range_s [1024];
 char expr [1024];

 if (isatty(0)) {
 printf ("error: expect stdin to be streaming data from ntracekd\n");
 exit(1);
 }

 if (argc == 3) {
 sprintf(option,"%s",argv[1]);
 if (!strcmp(option,"--bracket")) {
 printf(detect_usage);
 exit (1);
 }

 sprintf(expr,"%s",argv[2]);
 sprintf(range_s,"%s",argv[1]);
 range = atoi(range_s);

 copy_current = 1;
 } else if (argc == 4) {

 sprintf(option,"%s",argv[1]);
 if (strcmp(option,"--bracket")) {
 printf(detect_usage);
 exit (1);
 }

 sprintf(expr,"%s",argv[3]);
 sprintf(range_s,"%s",argv[2]);
 range = atoi(range_s);

 if (range <= 0) {
 printf("error: range must be greater than zero\n");
 }
 copy_range = 1;

 } else {
 printf(detect_usage);
 exit (1);
 }

 // Initialize the API
 t = tr_init();

 // Create a condition structure representing the users condition
 user = tr_cond_create(t,"user");
 tr_cond_expr_and(t,user,expr);

D-26

NightTrace Analysis API Examples
 // Create a state which starts when the condition true starts (which
 // will be true for the very first event and stops when the user's
 // condtion is met.
 start = tr_cond_create(t,"start");
 tr_cond_expr_and(t, start, "offset>=0");
 state = tr_state_create(t,"state");
 tr_state_start_cond(t,state,start);
 tr_state_end_cond(t,state,user);

 // Create a condition which is true when the state becomes inactive
 filter = tr_cond_create(t,"filter");
 tr_cond_expr_and(t, filter, "state_status(state)==0");

 // Open the input stream
 tr_open_stream(t, 0, 1024*1024*5, 0);

 if (copy_range){

 tr_cond_cb(t,filter,copy_input_range_cb,0);
 tr_iterate(t);

 } else if (copy_current){

 tr_cond_cb(t,filter,copy_current_input_cb,0);
 tr_iterate(t);

 }

 tr_close(t);

}

static
void
copy_input_range_cb
 (tr_t t,
 tr_state_t state,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable)
{
 int i;
 int errs;
 tr_string_node_t * list;
 int start = offset - range;
 int end = offset + range;

 if (start <= 0) start = 0;
 if (end <= 0) end = 1;
 if (start == end) end++;

 tr_copy_input_range(t,"copy_input_range.data",0666,start,end);
 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 }
D-27

NightTrace RT User’s Guide
 *disable = 1;
}

static
void
copy_current_input_cb
 (tr_t t,
 tr_state_t state,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable)
{
 int i;
 int errs;
 tr_string_node_t * list;
 int start = offset - range;
 int end = offset;

 if (start <= 0) start = 0;
 if (end <= 0) end = 1;
 if (start == end) end++;

 tr_copy_input_range(t,"copy_current_input.data",0666,start, end);
 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 }
 tr_halt(t);
}

D-28

E
Appendix EAnswers to Common Questions

2
4
2

Q: What can I do if trace events are not logging at all?

A: Verify that the trace event file name on the trace_begin() call matches the one on the user daemon
invocation. Furthermore, check that the file exists and that you have permission to read and write it. Check
the return codes from the API calls. Additionally, be sure your thread name, if specified to
trace_open_thread() contains no embedded spaces or punctuation, including periods. See
“trace_begin” on page 2-6 and “trace_open_thread” on page 2-11 for more information.

Q: When should I log a different trace event ID number?

A: Each endpoint of a state should have a different trace event ID number. Usually each trace event logging
routine logs a different trace event ID number. This lets you easily identify which source line logged the trace
event, how often that source line executed, and what order source lines executed in. However, it is sometimes
useful to log the same trace event ID in multiple places. This makes it possible to group trace events from
related, but not identical, activities. For more information, see “trace_event and Its Variants” on page 2-12.

Q: How can I prevent user trace events from being discarded or lost?

A: Use expansive mode; avoid use of buffer or file wrapping options. Flush the shared memory buffer more
often by tuning:

• The shared memory buffer sizes

• The number of shared memory buffers

• Increase the priority of the user trace daemon

• Bind the user trace daemon to a CPU with minimal activity

See “Preventing Trace Event Loss” on page 5-1 and Chapter 3 for more information.

Q: What can I do if trace events are not appearing in an ntrace display?

A: Press Refresh, fill out the Search Form, fill in values in the interval control area, use the interval scroll bar,
keep pressing the Zoom Out icon until you see trace events, examine a display object configuration so you
know what it is “listening” for, add or reconfigure display objects on the grid.

Q: How can I prevent kernel trace events from being lost?

A:
E-1

NightTrace RT User’s Guide
• Verify that the raw kernel trace output file (if not streaming) is on a local file system and not
an NFS file system.

• Increase the size and number of the kernel trace buffers

• Increase the priority of the kernel trace daemon

• Bind the kernel trace daemon to a CPU with minimal activity

See “Preventing Trace Event Loss” on page 5-1 and Chapter 3 for more information.

Q: Why can’t I see my individual thread names?

A: By default, all threads will share the same thread name (either “main” or the thread name passed to
trace_open_thread()). You can specify a new thread name in individual threads using trace_open_thread after
registering your thread with the NightTrace API. See “Threads and Logging” on page 2-26 for more infor-
mation.
E-2

F
Appendix FGlossary

This glossary defines terms used in the documentation. Terms in italics are defined here.

Ada task

An Ada task is a construct of statements which logically execute in parallel with
other tasks within an Ada program (process). Tasks communicate asynchronously
via variables whose visibility is defined by normal Ada scoping rules. Tasks
communicate synchronously via rendezvous between a calling and accepting task.

argument

See trace event argument.

boolean table

A pre-defined string table which associates 0 with false and all other values with
true.

buffer-wraparound mode

The mode that causes the ntraceud daemon to treat the shared memory buffer as a
circular queue and to overwrite the oldest trace events with the newest ones; this
means that ntraceud intentionally discards the oldest trace events to make room
for the newest ones. Invoke ntraceud with the -bufferwrap option to obtain
this behavior. The two other ntraceud modes are expansive mode and file-wrap-
around mode.

button

See mouse button, push button, and radio button.

click

To press and release a mouse button without moving the pointer. Usually you do
this in NightTrace to select menu items, push buttons, or radio buttons.

Close

A push button that closes a dialog box. This can also be a menu item that makes a
window close.

Column

A display object that constrains the width of State Graphs, Event Graphs, Data
Graphs, and Rulers.
Glossary-1

NightTrace RT User’s Guide
configuration

The definition of a display object or profile.

configuration file

An NightTrace-generated ASCII file that holds display pages, and profile defini-
tions. This can also be a hand-edited table file, containing definition of string tables
and/or format tables.

context switch

An action that occurs inside the kernel. Its functions are to save the state of the
process that is currently executing, to initialize the state of the process to be run, and
to begin execution of the new process.

context switch line

A vertical line superimposed on an exception graph or a syscall graph on a kernel
display page. It indicates that the kernel has switched out the process that was
previously running on the CPU and switched in a new process.

control

See mouse button, push button and radio button.

CPU box

A Grid Label on a kernel display page. It identifies which logical central processing
unit the displayed data corresponds to. Logical CPU numbers are related to, but not
necessarily identical to, physical CPU numbers.

current instance of a state

The instance of a state which has begun but has not yet completed. Thus, the cur-
rent time line would be positioned within the region from the start event up to, but
not including, the end event.

current time

The time in the interval up to which all display objects on a display page have been
updated.

current time line

The dashed vertical bar that represents the current time in a Column.

current trace event

The last trace event on or before the current time line.
Glossary-2

Glossary
cursor

See text cursor.

daemon definition

The configuration of a particular trace daemon which includes daemon collection
modes and settings, daemon priorities and CPU bindings, and data output formats,
as well as which trace event types are handled by that daemon.

Data Box

A display object that displays possibly variable textual or numeric information.

Data Graph

A scrollable display object that graphically displays a bar chart of an expression’s
value as it changes over the interval.

Default Kernel Page

A menu item that automatically creates a display page to depict context switches,
interrupts, exceptions, and system calls with display objects for each CPU on the
system.

Default Page

A menu item that automatically creates a display page with a State Graph for each
trace event logging process in your trace event file(s).

device table

A pre-defined, dynamically generated string table in the vectors file created by
ntrace when consuming raw kernel trace data files. string table contains the
names of the devices that are currently configured in the kernel.

dialog box

A transient secondary window that accepts input or conveys a message, for example
information, errors, warnings, and questions. This construct is occasionally called a
pop-up window.

dimmed

See disabled.

disabled

To flag a component, such as a menu item or push button, as temporarily unavail-
able by graying out the label.
Glossary-3

NightTrace RT User’s Guide
discarded trace event

A trace event that ntraceud intentionally did not log in buffer-wraparound or
file-wraparound mode.

display object

A user-configured graphical component of a display page that shows trace events,
states, trace event arguments, other numeric and text data. Display objects include
the following: Grid Labels, Data Boxes, Columns, State Graphs, Event Graphs,
Data Graphs and Rulers.

display page

The NightTrace window that allows you to layout display objects and see trace event
and state information in them. You can store display pages in configuration files.

dotted area

See grid.

drag

To press and hold down a mouse button while moving the mouse. Usually you do
this in NightTrace to position a display object.

duration

The period of time between the start and end trace events of some state.

Edit mode

The display-page mode that allows you to create, edit, and configure display
objects. The other display-page mode is View mode.

ellipses (...)

An indicator at the end of a menu item that tells you this selection makes a dialog
box appear. Also, an indicator in command line option summaries and syntax
listings that tells you more than one occurrence of the previous syntactic component
is allowed.

end function

A state function that provides information about the ending trace event of the last
completed instance of a state. The state to which the end function applies is either
the state specified to the function, or the state being currently defined. Thus, if a
qualfied state is not specified, end functions are only meaningful when used in
expressions associated within a state definition.

event

See trace event.
Glossary-4

Glossary
event_arg_dbl_summary table

A pre-defined format table which contains formats for statistical displays of trace
event matches and type double arguments.

event_arg_summary table

A pre-defined format table which contains formats for statistical displays of trace
event matches and type long arguments.

Event Graph

A scrollable display object that graphically displays trace events as vertical lines in
a Column.

event ID

See trace event ID.

event map file

User-generated ASCII file that lets you associate or map short mnemonic names
with numeric trace event IDs.

event table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
maps all known numeric trace event IDs with symbolic trace event names.

exception

An event internal to the currently executing process that stops the current execution
stream. Exceptions can be suspended and resumed.

exception graph

A State Graph on a kernel display page. It displays states representing exceptions
executing on the associated CPU.

expansive mode

The (default) mode that causes the ntraceud daemon to copy all trace events that
ever reach the shared memory buffer to the indefinitely-sized trace event file.
Invoke ntraceud without the -filewrap and -bufferwrap options to obtain
this behavior. The two other ntraceud modes are buffer-wraparound mode and
file-wraparound mode.

expression

A combination of operators and operands that evaluate to a value. Operands include
constants, function calls, and profile referneces.
Glossary-5

NightTrace RT User’s Guide
Exit

A menu item that terminates an NightTrace session.

file-wraparound mode

The mode that causes the ntraceud daemon to overwrite the oldest trace events in
the beginning of the trace event file with the newest ones; this means that
ntraceud intentionally discards the oldest trace events to make room for the
newest ones. Invoke ntraceud with the -filewrap option to obtain this
behavior. The two other ntraceud modes are expansive mode and buffer-wrap-
around mode.

flushing the buffer

The process of the ntraceud daemon copying trace events from the shared
memory buffer to a trace event file.

font

A style of text characters.

format function

A function that allows you to display a string.

format table

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding dynamically-formatted
and generated character string. You hand-edit format tables into configuration files.
The related structure is a string table.

function

A pre-defined NightTrace entity that may be used in an expression. NightTrace pro-
vides several classes of functions: trace event, multi-event, start, end, multi-state,
offset, summary, format, and table functions.

gap

The period of time between two trace events, possibly the end of one state and the
beginning of another.

global process identifier

See PID.

Global Window

The NightTrace window that displays summary statistics pertaining to your trace
event files and allows you to open NightTrace-related files.
Glossary-6

Glossary
graphical user interface

The mechanism NightTrace uses to receive input and provide displays. It is based on
the X Window System and Motif.

grid

The region of the display page filled with parallel rows and columns of dots that
holds display objects.

Grid Label

A display object that displays constant textual information.

GUI

See graphical user interface.

Help

A menu item that presents the online manual using the HyperHelp viewer.

host system

The system on which the NightTrace GUI is running.

icon

The small graphical image and/or text label that represents a window or window
family when the window is minimized. The text label is either the window title or
an abbreviated form of the title. Iconified windows are still active.

ID

See trace event ID.

instrumented code

Source code after you have put calls to NightTrace library routines into it.

interrupt

An event external to the currently executing process; an interrupt stops the current
execution stream to begin execution of a higher-priority execution stream. There are
device-related and software-generated interrupts. Interrupts have an associated
priority known as the interrupt priority level (IPL), which allows an interrupt to
interrupt the execution stream of a lower-IPL interrupt.

interrupt graph

A Data Graph on a kernel display page. It displays states representing interrupts
executing on the associated CPU.
Glossary-7

NightTrace RT User’s Guide
interrupt priority level (IPL) register

A system register than can be used by the NightTrace library to prevent rescheduling
and interrupts during trace event logging.

interval

A time period in the trace session delimited by the Start Time and End Time
fields of the interval control area.

interval control area

The region of the display page that holds nine numeric fields that define and
manipulate the interval and the display objects on the grid.

interval timer

The system timer on the NightHawk 6000 Series and TurboHawk systems that
NightTrace uses to timestamp trace events.

Kernel Trace Event File

A trace event file is generated by a kernel trace daemon. This file contains raw ker-
nel data and is automatically transformed into a filtered file (with a new filename
using the “.ntf” suffix) by ntrace. Either a raw kernel trace event file or a fil-
tered file may be specified to ntrace. The filtering process also creates a vectors
file which is formed by appending a “.vec” suffix to the original trace event file
name.

keyboard

A traditional input device for entering text into fields. In this manual, this is a
standard 101-key North American keyboard.

last completed instance of a state

The most recent instance of a state that has already completed. Thus, the current
time line would be positioned either on, or after, the end event for a state.

last exception box

A Data Box on a kernel display page. It displays the last exception prior to the
current time line that executed (and may still be executing) on the associated CPU.

last interrupt box

A Data Box on a kernel display page. It displays the name of the last interrupt prior
to the current time line that executed (and may still be executing) on the associated
CPU.
Glossary-8

Glossary
last syscall box

A Data Box on a kernel display page. It displays the last syscall prior to the current
time line that executed (and may still be executing) on the associated CPU.

lost trace event

A trace event ntraceud was unable to log. Several ntraceud options exist to
prevent this trace event loss.

mark

The solid triangle on a Ruler that points to a particular time.

match

A trace event or state that meets user-defined qualifying configuration criteria.

menu

A list of user-selectable choices.

menu bar

The horizontal band near the top of a window that contains a list of labeled
pull-down menus.

message display area

The scrolling region of the Global Window or the display page that holds textual
statistics, as well as error and warning messages.

most recent instance of a state

If the current time line is positioned within a current instance of a state, then it is
that instance of the state. Otherwise, it is the last completed instance of a state.

mouse

In this manual, a three-button pointing device for point-and-click interfaces.

mouse button

A part of the mouse that you can press to alter aspects of the application. Each
mouse button has a different purpose. Button 1 is usually for selecting or dragging.
Button 2 is usually for moving display objects. Button 3 is usually for resizing
display objects. You can make multiple selections by simultaneously pressing
<Shift> and clicking mouse button 1. You may click, drag, press, and release
mouse buttons.
Glossary-9

NightTrace RT User’s Guide
multi-event function

Multi-event functions return information about ocurrences of events, or relation-
ships between occurrences of events, before the current time line.

multi-state function

Multi-state functions return information about instances of states, or relationships
between instances of states, before the current time line.

name_pid table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates node ID numbers with the the name of each node's process ID table.

name_tid table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates node ID numbers with the the name of each node's thread ID table.

New Page

A menu item that creates an empty display page.

NightTrace

The interactive debugging and performance analysis tool that is part of the Night-
Star tool kit. It consists of the ntraceud daemon, NightTrace library routines, and
the ntrace display utility. This product allows you to log trace events and data
from applications written in C, Ada, or Fortran; these applications may be composed
of one or more processes, running on one or more CPUs. You can then examine
these trace events and those from the kernel through the ntrace display utility.

NightTrace thread

A process, Ada task, or thread (or a set of any combination of these) that is
associated with a uniquely named trace context. The thread name is derived from
the argument specified to the trace_open_thread() function.

NightTrace thread identifier

See TID.

NightView

A symbolic debugger that is part of the NightStar tool kit. It lets you debug C and
Fortran applications; these applications may be composed of one or more processes,
running on one or more CPUs. Among other things, NightView can automatically
patch trace event logging routines into your executable application.

node

A system from which a trace event file can come from.
Glossary-10

Glossary
node box

If the RCIM synchronized tick clock is used to timestamp events, this is a Grid
Label on a kernel display page. It identifies which node to which the displayed data
corresponds.

node ID

A unique identifier internally assigned by NightTrace to every node that has an trace
event file in a trace file analysis.

node name

The name of a system from which a trace event file can come.

node_name table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates node ID numbers with node names.

node PID table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates process identifiers (PIDs) with process names for a particular node. The
name of each node's table is pid_nodename where nodename is the node's name. If
kernel tracing, this table is stored in the vectors file.

node TID table

A pre-defined, dynamically generated string table. It is internal to NightTrace. If
user tracing, it associates NightTrace thread ID numbers with thread names for a
particular node. If kernel tracing, this table is not used. The name of each node's
table is tid_nodename where nodename is the node's name.

NT_ASSOC_PID

An overhead trace event that ntraceud logs at the beginning and end of each
process.

NT_ASSOC_TID

An overhead trace event that ntraceud logs at the beginning and end of each
thread and Ada task.

NT_CONTINUE

An overhead trace event that ntraceud logs for multi-argument trace events.

ntrace display utility

The part of NightTrace that graphically displays trace events, trace event data, and
states for debugging and performance analysis.
Glossary-11

NightTrace RT User’s Guide
ntraceud

The NightTrace daemon process that allows you to log user-defined trace events and
data from user applications written in C, Ada, or Fortran. These applications may be
composed of one or more processes, running on one or more CPUs.

object

See display object.

offset

The number that identifies the position of a trace event in the chronologi-
cally-ordered sequence of trace events, regardless of the trace event ID. Counting
starts from zero. For example, if a trace event with trace event ID 71 is the third
trace event in the trace session, then its offset is 2.

offset function

A function that takes an expression that evaluates to an offset as a parameter.

OK

A push button that acknowledges the warning in a dialog box.

Open

A menu item and push button that opens an existing file.

ordinal trace event number

See offset.

panel

A window component that groups related buttons, for example push buttons.

PID

A 32-bit integer that represents an operating system process, which is normally the
value returned by getpid(2) for single-threaded applications, and gettid(2) for
multi-threaded application in kernel data.

PID table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates process identifiers (PIDs) with process names. If kernel tracing, the pid
string table in the vectors file.

point

To move the mouse so the mouse pointer is positioned at the place of interest.
Glossary-12

Glossary
pointer

A graphical symbol that represents the mouse pointer’s current location in the
window. The shape of the pointer shows the current usage. Usually a pointer is
shaped like an arrow pointing to the upper left.

pop-up window

See dialog box.

press

To hold down a mouse button without releasing it or to depress a keyboard key.

profile

The "logical and" of several criteria such as event codes, processes, and threads.
conditions used to identify an event or a state.

profile reference

The name of a profile.

pull-down menu

A set of critera defining conditions for an event or state; e.g event IDs, argument
values, CPU, process, thread.

push button

A graphic image of a labeled button. Click on a push button to select it.

radio button

A graphic, labeled diamond-shape that represents a mutually exclusive selection
from related radio buttons. Click on a radio button to select it.

RCIM

The Real-Time Clock and Interrupt Module is a multi-function PCI mezzanine card
(PMC) designed for time-critical applications that require rapid response to external
events, synchronized clocks, and/or synchronized interrupts. The RCIM provides
synchronized clocks (tick timer and posix format clock), edge-triggered interrupts,
real-time clocks, and programmable interrupts.

RCIM synchronized tick clock

The primary clock on an RCIM. It is a 64-bit non-interrupting counter that counts
each tick of the clock (400 nanoseconds). When connected to other RCIMs, the
synchronized tick clock provides a time base that is consistent for all connected sin-
gle board computers.
Glossary-13

NightTrace RT User’s Guide
Read

A menu item and push button that read an existing file.

record

See trace event.

region

The period of time between the mark and the current time.

release

To let go of the currently-pressed mouse button.

Reset

A push button that cancels (undoes) all unapplied changes.

Restore

A push button that cancels all changes since the dialog box was displayed.

Ruler

A scrollable display object that appears as a hash-marked timeline within a Column.
The Ruler may also contain reverse video “L”s indicating lost trace events and
user-defined marks.

running process box

A Data Box that shows the process that is executing at the current time line on the
associated CPU. If the RCIM module is used to timestamp events, this Data Box
will show the process that is executing at the current time line on both the associated
CPU and node.

Save

A menu item and push button that overwrite an existing configuration file with the
current display page.

Save As

A menu item that saves the current display page in a new configuration file.

Save Text

A menu item that overwrites an existing summary text file with text from the
summary display area.
Glossary-14

Glossary
Save Text As

A menu item that saves the current summary text from the summary display area
into a new summary text file.

SBC

Single-board computer.

scroll bar

The narrow, rectangular graphic device used to change a display that would not
otherwise fit in the window. It consists of a trough, a slider, and arrowhead buttons.
If the slider does not fill the trough, there is a gap on one or both sides.

Search Form

The NightTrace form that allows you to define criteria to be used to locate a trace
event in a trace event file by its configured characteristics and its location in the file.

selection

The display object that you clicked on. Alternatively, a selection may be the region
of a text field you dragged the mouse over. For menu items, push buttons, and radio
buttons NightTrace indicates selection by highlighting your choice. For display
objects, NightTrace places handles on the display object. For dragged-over text
fields, NightTrace displays that text in reverse video.

separator

A line that groups related window components or menu components.

session

A session consists of daemon definitions, display page configurations, string tables,
profiles, named tags, previously-executed searches, and previously-executed sum-
maries. A session also includes references to saved trace data segment files, kernel
trace files, and user trace files. A session can be saved to a session configuration file
and reloaded in subsequent invocations of NightTrace.

shared memory buffer

The intermediate destination of trace events before ntraceud copies them to the
trace event file on disk.

slider

The graphic part of a scroll bar that you move in the trough to change the display.
This component is sometimes called a thumb.

spin lock

A device used to protect a resource, for example, the shared memory buffer.
Glossary-15

NightTrace RT User’s Guide
start function

A state function that provides information about the start event of the most recent
instance of a state. The state to which the start function applies is either the state
specified to the function, or the state being currently defined. Thus, if a state is not
specified, start functions are only meaningful when used in expressions associated
within a state definition. In addition, start functions should not be used in a recur-
sive manner in a Start Expression; a start function should not be specified in a
Start Expression that applies to the state definition containing that Start
Expression. Conversely, an End Expression may include start functions that
apply to the state definition containing that End Expression.

state

A state is a region of time bounded by two trace events, a start event and an end
event. An instance of a state is the period of time between the start event and end
event, including the start and end events themselves. Additional conditions may be
specified in a state definition to further constrain the state. Instances of states do not
nest; that is, once a state becomes active, events that might normally satisfy the con-
ditions for the start event are ignored until the end event is encountered.

state function

The class of NightTrace functions which provide information about states, includ-
ing: start functions, end functions, and multi-state functions.

State Graph

A scrollable display object that graphically displays states as bars and trace events
as vertical lines in a Column.

streaming

The method used by the NightTrace of sending trace data from daemons directly to
the NightTrace display.

string table

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding static character string.
You hand-edit string tables into configuration files. The related structure is a format
table.

Summarize Form

The NightTrace form that allows you to obtain trace event and state statistics, such
as minimum, maximum, average, and total values of gaps, durations, and trace
event arguments.

summary display area

The scrolling region of the Summarize Form that holds textual summary
statistics.
Glossary-16

Glossary
summary function

A funct ion that takes another express ion as a parameter (except for
summary_matches()).

summary syscall

A system call that is a special type of exception. A syscall is made when a user
program forces a trap into the operating system via a special machine instruction. A
syscall is used to request a given service from the kernel. Many library routines
supplied as part of the operating system make syscalls to accomplish their functions.
Syscalls can be suspended and resumed.

syscall

System call.

syscall graph

A State Graph on a kernel display page. It displays states representing system calls
(syscalls) executing on the associated CPU.

syscall table

A pre-defined, dynamically generated string table in the vectors file. This string
table contains the names of all the possible system calls (syscalls) that can occur on
the system.

table

See format table and string table.

table function

A function that allows you to extract information from user-defined and pre-defined
string tables and format tables.

tag

A uniquely-numbered indicator on a Ruler that represents an individual point of
interest in the trace data (either a particular time or event) and which can be identi-
fied by a name.

task

See Ada task.

task ID

A 16-bit integer chosen by the Ada run-time executive that uniquely identifies an
Ada task within an Ada program.
Glossary-17

NightTrace RT User’s Guide
text cursor

The blinking vertical bar in an editable text field that shows your current edit
position within the field.

thread

A sequence of instructions and associated data that is scheduled and executed as an
independent entity. Every process linked with the Threads Library contains at least
one, and possibly many, threads. Threads within a process share the address space of
the process.

thread ID

A 16-bit integer chosen by the threads library that uniquely identifies a thread
within a given process.

TID

A 32-bit integer that represents an internal NightTrace context to which trace events
can be associated.

TID table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates NightTrace thread identifiers (TIDs) with thread names. This table is not
used in kernel tracing.

timestamp

The time at which a specific trace event was logged. This provides the means by
which the chronology of the trace events logged by multiple processes can be
assembled.

time quantum

The fixed period of time for which the kernel allocates the CPU to a process.

trace context

All trace points are associated with a log file (established via trace_start) and a
thread name (established via trace_open_thread). If two processes (or tasks or
threads) are associated with the same log file and thread name, then they are said to
have the same trace context. If they differ in log file, thread name, or both, then they
have different trace contexts.

trace event

A user-defined point of interest in an application’s source code that NightTrace
represents with an integer trace event ID. Alternatively this may be a predefined
point of interest in the kernel. Along with the trace event ID, NightTrace records the
timestamp when the trace event occurred, any arguments logged with the trace
event, and the logging process identifier (PID).
Glossary-18

Glossary
trace event argument

A user-defined numeric value logged by an application via a trace event.

trace event file

An ntraceud-created binary file that contains sequences of trace events and data
that your application and the ntraceud daemon logged.

trace event function

The class of NightTrace functions that provide information about trace events. They
operate on either the profile specified to that function or, if unspecified, the current
trace event. Trace event functions include multi-event functions.

trace event ID

An integer that identifies a trace event. User trace event IDs are in the range
0-4095, inclusive. Kernel trace event IDs are in the range 4100-4300, inclusive.

trace point

A place of interest in the source code. In user tracing, at each trace point in your
application you call a trace event logging routine to log a trace event, possibly with
additional data describing part of your program’s state at that time. Kernel trace
points and trace events are already defined and embedded in the kernel source.

trough

The graphic part of a scroll bar that holds the slider.

vector table

A pre-defined, dynamically generated string table in the vectors file. This string
table contains the interrupt and exception vector names associated with the system
on which the kernel tracing was performed.

View mode

The display page mode that allows you to see, search for, and summarize trace event
information in the message display area, the summary display area, and display
objects on the grid.

widget

A window component, for example a scroll bar or push button.

window

A rectangular screen area that permits the display and/or entry of data. The Night-
Trace display utility consists of several windows.
Glossary-19

NightTrace RT User’s Guide
window manager

The program that controls window placement, size, and operations.

wraparound mode

The mode that causes the ntraceud daemon to intentionally discard old events.
There are two forms of wraparound mode: buffer-wraparound and file-wraparound.
The other ntraceud mode is expansive mode.
Glossary-20

Index
Symbols

/usr/bin/ntracekd 4-1
/usr/bin/ntraceud 3-1
/usr/include/ntrace.h 2-1
/usr/lib/libntrace.a 2-28
/usr/lib/libntrace_thr.a 2-28

A

Ada language
compiling and linking 2-29

Ada task identifier 11-4, 11-22, 11-44, 11-61, 11-82,
13-40, 13-41

Apply push button 9-34
arg function 11-3, 11-16
arg_dbl function 11-17, 11-18
arg1 function 6-23, 11-3, 11-106
arg2 function 11-6
avg function 11-95

B

boolean table 6-18
Box

interrupt 12-10
syscall 12-12

Box exception 12-11
Buffer-wraparound mode 2-20

C

C language
compiling and linking 2-29
source considerations 2-1

clock_synchronize(1M) command 2-9
Column 9-30, 10-6
Comments

configuration file 6-14
event-map file 6-11

Configuration form 10-46
Configuration parameters

Fill Style 10-43
Then-Expression 11-104

Configuring
display object 10-15

Conserving disk space 5-3
Constant string literals 6-22, 11-7, 11-102
Constant times 11-2
Context switch

lines 12-10, 12-11, 12-12
cpu function 11-24
Create menu 10-12
Create mouse operation 10-12
Current Time field 9-31, 9-34
Current time line 12-9, 12-10, 12-11

D

Data Box 10-5, 10-18, 11-104, 12-11, 12-12, 12-13
Data Graph 9-30, 10-8, 10-37, 12-11

Fill Style configuration parameter 10-43
device table 6-20, 12-4, 12-14
device_nodename table 6-20, 12-15
Disabling

library routines 2-17, 2-25
trace events 2-18
tracing 2-17, 2-25

Discarding trace events 2-20, E-1
Display object 10-1

Column 9-30, 10-6
configuring 10-15
creating 10-12
Data Box 10-5, 10-18, 11-104, 12-11, 12-12, 12-13
Data Graph 9-30, 10-8, 10-37, 12-11
Event Graph 10-6, 10-25, 12-13
EventGraph 9-30
Grid Label 10-16
GridLabel 10-4
moving 10-14
overlapping 10-15
Index-1

NightTrace RT User’s Guide
placement 10-12
resizing 10-14
Ruler 10-45
selecting 10-13
State Graph 9-30, 10-7, 10-31, 12-11, 12-12

Display object configuration parameters
Fill Style 10-43
Then-Expression 11-104

Display page area
grid 9-30
interval scroll bar E-1
message display area 9-30, 10-7, 10-8, 10-9, 10-14

Dotted area. see Grid
Duration

state 11-71

E

Edit mode 7-23
Enabling

trace events 2-18
End Event field 9-31, 9-34
End functions 11-53
End Time field 9-31, 9-34
end_arg function 11-55
end_arg_dbl function 11-56, 11-57
end_cpu function 11-63
end_id function 11-54
end_node_id function 11-66
end_node_name function 11-69
end_num_args function 11-58
end_offset function 11-64
end_pid function 11-59
end_pid_table_name function 11-67
end_task_id function 11-61
end_thread_id function 11-60
end_tid function 11-62
end_tid_table_name function 11-68
end_time function 11-65
Environment variable

NSLM_SERVER A-2
errno 13-94
Event

gap 11-34
matches 11-35
qualified 11-107

Event Count field 9-33
Event Graph 10-6, 10-25, 12-13
Event ID. see Trace event

ID
event table 6-17
Event. see Trace event

event_gap function 11-34
event_matches function 11-35
EventGraph 9-30
Event-map file 2-14, 6-2, 6-11
Exception 12-3, 12-11, 12-14, 12-15

graph 12-11
resumption 12-11
suspension 12-11

Exception box 12-11
execve(2) service 2-8
Expressions

constant string literals 6-22, 11-7, 11-102
functions 11-2
operands 11-1
operators 11-1

F

Field
Current Time 9-31, 9-34
End Event 9-31, 9-34
End Time 9-31, 9-34
Event Count 9-33
Increment 9-31
Start Event 9-31, 9-33
Start Time 9-31, 9-33
Time Length 9-33

File
/usr/bin/ntracekd 4-1
/usr/bin/ntraceud 3-1
/usr/include/ntrace.h 2-1
/usr/lib/libntrace.a 2-28
/usr/lib/libntrace_thr.a 2-28
event-map 2-14, 6-2, 6-11
trace event 2-6, 3-1, 6-10
vectors 6-17, 12-2, 12-14, 12-15

File system
NFS E-2

Fill Style configuration parameter 10-43
Fixed licenses A-1
Floating licenses A-1
Flushing shared memory buffer 2-20
fork(2) service 2-8
Form

Configuration 10-46
Format

functions 11-100
format function 11-106
Format table 6-10, 6-20, 11-104

get_format function 11-104
Fortran language

compiling and linking 2-29
Index-2

Index
Functions 11-2
arg 11-3, 11-16
arg_dbl 11-17, 11-18
arg1 6-23, 11-3, 11-106
arg2 11-6
avg 11-95
cpu 11-24
end 11-53
end_arg 11-55
end_arg_dbl 11-56, 11-57
end_cpu 11-63
end_id 11-54
end_node_id 11-66
end_node_name 11-69
end_num_args 11-58
end_offset 11-64
end_pid 11-59
end_pid_table_name 11-67
end_task_id 11-61
end_thread_id 11-60
end_tid 11-62
end_tid_table_name 11-68
end_time 11-65
event_gap 11-34
event_matches 11-35
format 11-100
format 11-106
get_format 11-104
get_item 11-102
get_string 6-20, 6-22, 6-23, 11-100
id 11-13, 11-15, 11-104, 11-106
max 11-94
max_offset 11-98
min 11-93
min_offset 11-97
multi-event 11-34
multi-state 11-70
node_id 11-27
node_name 11-30
num_args 11-19
offset 11-74
offset 6-23, 11-25
offset_arg 11-76
offset_arg_dbl 11-77, 11-78
offset_cpu 11-84
offset_id 11-75, 11-97, 11-98
offset_node_id 11-86
offset_node_name 11-89
offset_num_args 11-79
offset_pid 11-80
offset_pid_table_name 11-87
offset_process_name 11-90
offset_task_id 11-82
offset_task_name 11-91

offset_thread_id 11-81
offset_thread_name 11-92
offset_tid 11-83
offset_tid_table_name 11-88
offset_time 11-85
pid 11-20, 11-104
pid_table_name 11-28
process_name 11-31
start 11-36
start_arg 11-38
start_arg_dbl 11-39, 11-40
start_cpu 11-46
start_id 11-3, 11-37
start_node_id 11-49
start_node_name 11-52
start_num_args 11-41
start_offset 11-47
start_pid 11-42
start_pid_table_name 11-50
start_task_id 11-44
start_thread_id 11-43
start_tid 11-45
start_tid_table_name 11-51
start_time 11-48
state_dur 11-71
state_gap 11-3, 11-70
state_matches 11-72
state_status 11-73
sum 11-96
summary 11-93
summary_matches 11-99
table 11-100
task_id 11-22
task_name 11-32
thread_id 11-21
thread_name 11-33
tid 11-23
tid_table_name 11-29
time 11-26
trace event 11-13

G

Gap
event 11-34
state 11-70

get_format function 11-104
get_item function 11-102
get_string function 6-20, 6-22, 6-23, 11-100
Global process identifier 10-1, 11-4, 11-20
Graph

data 9-30, 10-8, 12-11
Index-3

NightTrace RT User’s Guide
event 9-30, 10-6, 12-13
exception 12-11
interrupt 12-10
state 9-30, 10-7, 12-11, 12-12
syscall 12-12

Graphical user interface
resources 12-13

Grid 9-30
Grid Label 10-16
GridLabel 10-4

H

Hardclock interrupts 12-11

I

id function 11-13, 11-15, 11-104, 11-106
Increment 9-11
Increment field 9-31
Inter-process communication 2-4
Interrupt 12-2, 12-10, 12-14, 12-15

graph 12-10
hardclock 12-11

Interrupt box 12-10
Interval

scroll bar E-1
IRQ_ENTRY trace event 12-2
IRQ_EXIT trace event 12-2

K

Kernel tracing 6-17, 6-18, 12-1

L

Language
Ada 2-29
C 2-1, 2-29
Fortran 2-29

libntrace.a 2-28
libntrace_tjr.a 2-28
Library routines 2-1

overloading in Ada 2-3
return values 2-2
trace_begin 2-6, 2-12, 2-16, 2-19, 2-23, 3-1,

E-1
trace_close_thread 2-22
trace_disable 2-17
trace_disable_all 2-17, 2-25
trace_disable_range 2-17
trace_enable 2-17
trace_enable_all 2-17
trace_enable_range 2-17
trace_end 2-9, 2-20, 2-23, 3-2
trace_event 2-12, 10-1
trace_event_arg 2-12
trace_event_dbl 2-13
trace_event_flt 2-13
trace_event_two_dbl 2-13
trace_event_two_flt 2-13
trace_flush 2-20, 3-2
trace_open_thread 2-11, 2-22
trace_trigger 2-20, 3-2

licences 1-1
License A-1

fixed A-1
installation A-1
keys A-1
modes A-1
nslm_admin A-1, A-3
report A-3
requests A-2
server A-2
support A-4

License manager 1-1
Loading

trace event 6-5
Logging

trace event 5-4, E-1
Loss

trace event 2-16, E-1

M

Macros 11-107
Map file. see Event-map file
Mark 10-45
Matches

event 11-35
state 11-72
summary 11-99

max function 11-94
max_offset function 11-98
Maximum value 10-42, 11-94, 11-98
Menu

Create 10-12
Message display area 9-30, 10-7, 10-8, 10-9, 10-14
Index-4

Index
min function 11-93
min_offset function 11-97
Minimum value 10-43, 11-93, 11-97
Mode

buffer-wraparound 2-20
Edit 7-23
View 9-1

Mouse button
1 9-32, 10-13
2 9-30, 9-32, 10-7, 10-8, 10-9, 10-14
3 9-30, 10-9, 10-14

Mouse operation
create 10-12
move 10-14
resize 10-14
select 10-13

Move mouse operation 10-14
Multi-event functions 11-34
Multi-state functions 11-70

N

name_pid table 6-18, 12-14
name_tid table 6-19
NFS file system E-2
NightStar Licence Manager 1-1
NightTrace thread identifier 10-1, 11-4, 11-23, 11-45,

11-62, 11-83, 13-38
NLSM 1-1
Node identifer 11-27
Node identifier

ending trace event 11-66
offset 11-86
starting trace event 11-49

Node name 11-30
ending trace event 11-69
ordinal trace event 11-89
starting trace event 11-52

node_id function 11-27
node_name function 11-30
node_name table 6-19, 12-14
nslm_admin A-1, A-3
NSLM_SERVER A-2
ntrace 1-3

format tables 6-10, 6-20
functions 11-2
operands 11-1
operators 11-1
performance considerations 6-5
string tables 6-10, 6-16

ntrace field
Current Time 9-31, 9-34

End Event 9-31, 9-34
End Time 9-31, 9-34
Event Count 9-33
Increment 9-31
Start Event 9-31, 9-33
Start Time 9-31, 9-33
Time Length 9-33

ntrace functions 11-2
ntrace mode

Edit 7-23
View 9-1

ntrace option
--end (load events before constraint) 6-4
--listing (list trace events) 6-12
--start (load events after constraint) 6-3

ntrace qualified states 11-37, 11-38, 11-39, 11-40,
11-41, 11-42, 11-43, 11-44, 11-45, 11-46,
11-47, 11-48, 11-49, 11-50, 11-51, 11-52,
11-53, 11-54, 11-55, 11-56, 11-57, 11-58,
11-59, 11-60, 11-61, 11-62, 11-63, 11-64,
11-65, 11-66, 11-67, 11-68, 11-69, 11-70,
11-71, 11-72, 11-73

ntrace window
Configuration 10-46

ntrace.h 2-1
ntracekd

daemon 4-1
ntraceud

daemon 3-1
invoking 3-6

ntraceud mode
buffer-wraparound 2-20

num_args function 11-19

O

Offset 6-4, 9-30, 9-33, 10-1, 11-3, 11-5, 11-7, 11-74,
11-75, 11-76, 11-77, 11-78, 11-79, 11-80,
11-81, 11-82, 11-83, 11-84, 11-85, 11-86,
11-87, 11-88, 11-89, 11-90, 11-91, 11-92

offset function 6-23, 11-25
Offset functions 11-74
offset_arg function 11-76
offset_arg_dbl function 11-77, 11-78
offset_cpu function 11-84
offset_id function 11-75, 11-97, 11-98
offset_node_id function 11-86
offset_node_name function 11-89
offset_num_args function 11-79
offset_pid function 11-80
offset_pid_table_name function 11-87
offset_process_name function 11-90
Index-5

NightTrace RT User’s Guide
offset_task_id function 11-82
offset_task_name function 11-91
offset_thread_id function 11-81
offset_thread_name function 11-92
offset_tid function 11-83
offset_tid_table_name function 11-88
offset_time function 11-85
Operands

constants 11-2
functions 11-2
qualified states 11-37, 11-38, 11-39, 11-40, 11-41,

11-42, 11-43, 11-44, 11-45, 11-46, 11-47,
11-48, 11-49, 11-50, 11-51, 11-52, 11-53,
11-54, 11-55, 11-56, 11-57, 11-58, 11-59,
11-60, 11-61, 11-62, 11-63, 11-64, 11-65,
11-66, 11-67, 11-68, 11-69, 11-70, 11-71,
11-72, 11-73

Operands in expressions 11-1
Operators in expressions 11-1

P

Performance considerations
ntrace 6-5

PID 10-1, 11-4, 11-20
pid function 11-20, 11-104
pid table 6-17, 12-15
PID table name 11-28
pid_nodename table 6-19, 12-14
pid_table_name function 11-28
Pre-defined tables 6-17, 12-4, 12-14
printf(3) routine 6-13, 6-22
printf(3S) routine 11-106
Process identifier

ending trace event 11-67
offset 11-87
starting trace event 11-50

Process identifier table name 11-28
Process name 11-31

ordinal trace event 11-90
process_name function 11-31
Push button

Apply 9-34
Reset 9-35
Zoom Out E-1

Q

Qualified events 11-107
Qualified states 11-37, 11-38, 11-39, 11-40, 11-41,

11-42, 11-43, 11-44, 11-45, 11-46, 11-47,
11-48, 11-49, 11-50, 11-51, 11-52, 11-53,
11-54, 11-55, 11-56, 11-57, 11-58, 11-59,
11-60, 11-61, 11-62, 11-63, 11-64, 11-65,
11-66, 11-67, 11-68, 11-69, 11-70, 11-71,
11-72, 11-73

R

Record. see Trace event
Reset push button 9-35
Resize mouse operation 10-14
Resizing

display objects 10-14
Return values 2-2
Ruler 10-45

S

SCHED_CHANGE trace event 12-2
Scroll bar E-1
Select mouse operation 10-13
Shared memory

failure to attach 2-9
flushing 2-20

SOFT_IRQ_ENTRY trace event 12-3
SOFT_IRQ_EXIT trace event 12-3
Start Event field 9-31, 9-33
Start functions 11-36
Start Time field 9-31, 9-33
start_arg function 11-38
start_arg_dbl function 11-39, 11-40
start_cpu function 11-46
start_id function 11-3, 11-37
start_node_id function 11-49
start_node_name function 11-52
start_num_args function 11-41
start_offset function 11-47
start_pid function 11-42
start_pid_table_name function 11-50
start_task_id function 11-44
start_thread_id function 11-43
start_tid function 11-45
start_tid_table_name function 11-51
start_time function 11-48
State 2-15, 10-1, 10-7, 10-31, 12-10, 12-11

duration 11-71
gap 11-70
matches 11-72

State Graph 9-30, 10-7, 10-31, 12-11, 12-12
Index-6

Index
state_dur function 11-71
state_gap function 11-3, 11-70
state_matches function 11-72
state_status function 11-73
Statistics

multi-event 11-34
multi-state 11-70
summary 11-93

String table 6-10, 6-16, 11-100, 11-102
boolean 6-18
device 6-20, 12-4, 12-14
device_nodename 6-20, 12-15
event 6-17
get_item function 11-102
get_string function 6-20, 6-22, 6-23, 11-100
name_pid 6-18, 12-14
name_tid 6-19
node_name 6-19, 12-14
pid 6-17, 12-15
pid_nodename 6-19, 12-14
syscall 6-20, 12-4, 12-14
syscall_nodename 6-20, 12-15
tid 6-18
tid_nodename 6-20
vector 6-20, 12-2, 12-3, 12-14
vector_nodename 6-20, 12-15

sum function 11-96
Summary

matches 11-99
Summary functions 11-93
summary_matches function 11-99
Syscall 12-4, 12-12, 12-14

graph 12-12
suspension 12-12

Syscall box 12-12
syscall table 6-20, 12-4, 12-14
SYSCALL_EXIT trace event 12-4
syscall_nodename table 6-20, 12-15
SYSCALL_RESUME trace event 12-4
SYSCALL_SUSPEND trace event 12-4
System call 12-4, 12-12, 12-14

T

Table
boolean 6-18
device 6-20, 12-4, 12-14
device_nodename 6-20, 12-15
event 6-17
format 6-10, 6-20, 11-104
functions 11-100
name_pid 6-18, 12-14

name_tid 6-19
node_name 6-19, 12-14
pid 6-17, 12-15
pid_nodename 6-19, 12-14
pre-defined 6-17, 12-4, 12-14
string 6-10, 6-16, 11-100, 11-102
syscall 6-20, 12-4, 12-14
syscall_nodename 6-20, 12-15
tid 6-18
tid_nodename 6-20
vector 6-20, 12-2, 12-3, 12-14
vector_nodename 6-20, 12-15

Tag 10-45
Task name 11-32

ordinal trace event 11-91
task_id function 11-22
task_name function 11-32
Text field

Current Time 9-31, 9-34
End Event 9-31, 9-34
End Time 9-31, 9-34
Event Count 9-33
Increment 9-31
Start Event 9-31, 9-33
Start Time 9-31, 9-33
Time Length 9-33

Then-Expression configuration parameter 11-104
Thread event

ordinal 11-88
Thread identifier

ending trace event 11-68
offset 11-88
starting trace event 11-51

Thread identifier table name 11-29
Thread name 11-33

ordinal trace event 11-92
Thread names 6-2, 6-18
thread_id function 11-21
thread_name function 11-33
TID 10-1, 11-4, 11-23, 11-45, 11-62, 11-83, 13-38
tid function 11-23
tid table 6-18
TID table name 11-29
tid_nodename table 6-20
tid_table_name function 11-29
time function 11-26
Time Length field 9-33
Times

constant 11-2
Timestamp 6-2, 9-31, 11-26, 11-48, 11-65, 11-85
tr_activate() 13-89
tr_append_table() 13-98
tr_arg_dbl() 13-35
tr_arg_dbl_() 13-36
Index-7

NightTrace RT User’s Guide
tr_arg_int() 13-34
tr_arg_int_() 13-34
tr_cancel_cb() 13-100
tr_cb_t 13-3
tr_close() 13-19
tr_cond_and() 13-73
tr_cond_cb() 13-101
tr_cond_cb_func_t 13-4
tr_cond_copy() 13-74
tr_cond_cpu() 13-55
tr_cond_cpu_clear() 13-55
tr_cond_create() 13-50
tr_cond_expr_and() 13-69
tr_cond_expr_or() 13-70
tr_cond_find() 13-51
tr_cond_func_and() 13-66
tr_cond_func_clear() 13-68
tr_cond_func_or() 13-64
tr_cond_func_t 13-4
tr_cond_id() 13-52
tr_cond_id_clear() 13-54
tr_cond_id_range() 13-53
tr_cond_name() 13-75
tr_cond_node() 13-62
tr_cond_node_clear() 13-63
tr_cond_not() 13-71
tr_cond_offset() 13-78
tr_cond_or() 13-72
tr_cond_pid() 13-56
tr_cond_pid_clear() 13-58
tr_cond_pid_name() 13-57
tr_cond_register() 13-77
tr_cond_reset() 13-51
tr_cond_satisfy() 13-75
tr_cond_satisfy_() 13-76
tr_cond_t 13-5
tr_cond_tid() 13-59
tr_cond_tid_clear() 13-61
tr_cond_tid_name() 13-60
tr_copy_input() 13-94
tr_cpu() 13-41
tr_cpu_() 13-42
tr_create_table() 13-97
tr_destroy() 13-13
tr_dir_t 13-5
TR_EOF 13-5, 13-24, 13-25, 13-26, 13-27, 13-78,

13-90, 13-91
tr_error_check() 13-16
tr_error_clear() 13-15
tr_free() 13-23
tr_get_item() 13-96
tr_get_string() 13-95
tr_halt() 13-100
tr_id() 13-30

tr_id_() 13-30
tr_init() 13-13
tr_iterate() 13-99
tr_nargs() 13-32
tr_nargs_() 13-33
tr_next_event() 13-24
tr_next_event_() 13-25
TR_NO_CB 13-101, 13-102
TR_NO_COND 13-50, 13-51, 13-71, 13-72, 13-73,

13-74
TR_NO_HANDLE 13-13
TR_NO_STATE 13-80, 13-81
tr_node() 13-43
tr_node_() 13-44
tr_offset_t 13-5
tr_open_file() 13-17
tr_open_stream() 13-18
tr_pid() 13-36
tr_pid_() 13-37
tr_prev_event() 13-25
tr_prev_event_() 13-26
tr_process_name() 13-44
tr_process_name_() 13-45
tr_search() 13-27
tr_seek() 13-28
tr_state_action_t 13-6
tr_state_active() 13-92
tr_state_active_() 13-93
tr_state_cb() 13-102
tr_state_cb_func_t 13-6
tr_state_create() 13-80
tr_state_end_cond() 13-88
tr_state_end_cond_clear() 13-88
tr_state_end_id() 13-84
tr_state_end_id_clear() 13-86
tr_state_end_id_range() 13-85
tr_state_find() 13-81
tr_state_info() 13-90
tr_state_info_() 13-91
tr_state_info_t 13-7
tr_state_name() 13-81
tr_state_start_cond() 13-86
tr_state_start_cond_clear() 13-87
tr_state_start_id() 13-82
tr_state_start_id_clear() 13-84
tr_state_start_id_range() 13-83
tr_state_t 13-7
tr_stream_event_t 13-8
tr_stream_func_t 13-8
tr_stream_notify() 13-20
tr_stream_read() 13-21
TR_STREAM_SAVE 13-18
tr_stream_size() 13-22
tr_string_node 13-8
Index-8

Index
TR_SYSCALL_ENTRY trace event 12-4
tr_t 13-8
tr_task_id() 13-40
tr_task_id_() 13-41
tr_task_name() 13-46
tr_task_name_() 13-46
tr_thread_id() 13-39
tr_thread_id_() 13-39
tr_thread_name() 13-47
tr_thread_name_() 13-47
tr_tid() 13-38
tr_tid_() 13-38
tr_time() 13-31
tr_time_() 13-32
Trace event 1-2, 10-1

arguments 2-14, 6-2, 6-12, 6-15, 10-1, 10-3, 10-9,
11-16, 11-17, 11-18, 11-19, 11-38, 11-39,
11-40, 11-41, 11-55, 11-56, 11-57, 11-58,
11-76, 11-77, 11-78, 11-79

context switch 12-1
disabling 2-18
discarding 2-20, E-1
enabling 2-18
exception 12-3
file 2-6, 3-1, 6-10
functions 11-13
ID 1-2, 2-14, 2-18, 6-2, 6-10, 6-12, E-1
information 10-7, 10-8, 11-13
interrupt 12-2
IRQ_ENTRY 12-2
IRQ_EXIT 12-2
loading 6-5
logging 5-4, E-1
loss 2-16, E-1
node identifer (ending trace event) 11-66
node identifer (offset) 11-86
node identifer (starting trace event) 11-49
node identifier 11-27
node name 11-30
node name (ending trace event) 11-69
node name (ordinal trace event) 11-89
node name (starting trace event) 11-52
offset 11-74
offset. see Offset
ordinal 11-86, 11-87, 11-89, 11-90, 11-91, 11-92
ordinal number. see Offset
PID table name 11-28
process identifer (ending trace event) 11-67
process identifer (offset) 11-87
process identifer (starting trace event) 11-50
process identifier table name 11-28
process name 11-31
process name (ordinal trace event) 11-90
SCHED_CHANGE 12-2

SOFT_IRQ_ENTRY 12-3
SOFT_IRQ_EXIT 12-3
syscall 12-4
SYSCALL_EXIT 12-4
SYSCALL_RESUME 12-4
SYSCALL_SUSPEND 12-4
task name 11-32
task name (ordinal trace event) 11-91
thread identifer (ending trace event) 11-68
thread identifer (offset) 11-88
thread identifer (starting trace event) 11-51
thread identifier table name 11-29
thread name 11-33
thread name (ordinal trace event) 11-92
TID table name 11-29
timestamp 6-2, 11-26, 11-48, 11-65, 11-85
TR_SYSCALL_ENTRY 12-4
TRAP_ENTRY 12-3
TRAP_EXIT 12-3
TRAP_RESUME 12-3
TRAP_SUSPEND 12-3

Trace point 1-1, 2-15
trace_begin 2-6, 2-12, 2-16, 2-19, 2-23, 3-1, E-1
trace_close_thread 2-22
trace_disable 2-17
trace_disable_all 2-17, 2-25
trace_disable_range 2-17
trace_enable 2-17
trace_enable_all 2-17
trace_enable_range 2-17
trace_end 2-9, 2-20, 2-23, 3-2
trace_event 2-12, 10-1
trace_event_arg 2-12
trace_event_dbl 2-13
trace_event_flt 2-13
trace_event_two_flt 2-13
trace_flush 2-20, 3-2
trace_open_thread 2-11, 2-22
trace_trigger 2-20, 3-2
Tracing

disabling 2-17, 2-25
kernel 6-17, 6-18, 12-1

TRAP_ENTRY trace event 12-3
TRAP_EXIT trace event 12-3
TRAP_RESUME trace event 12-3
TRAP_SUSPEND trace event 12-3

V

vector table 6-20, 12-2, 12-3, 12-14
vector_nodename table 6-20, 12-15
vectors file 6-17, 12-2, 12-14, 12-15
Index-9

NightTrace RT User’s Guide
View mode 9-1

W

Window
Configuration 10-46

X

X Window System
resources 12-13

Z

Zoom Out push button E-1
Index-10

	NightTrace RT User’s Guide
	Preface
	Contents
	Appendix A NightStar Licensing
	Appendix B Kernel Dependencies
	Appendix C NightTrace Logging API Examples
	Appendix D NightTrace Analysis API Examples
	Appendix E Answers to Common Questions
	Appendix F Glossary

	Introduction
	User Trace Point Placement
	Kernel Trace Point Placement
	Timestamps
	Languages
	Information Displayed

	Part I - Event Logging and Capture
	Using the NightTrace Logging API
	Language-Specific Source Considerations
	C
	Fortran
	Ada

	Inter-Process Communication and Library Routines
	Understanding NightTrace Library Calls
	trace_begin
	trace_open_thread
	trace_event and Its Variants
	trace_enable, trace_disable, and Their Variants
	trace_flush and trace_trigger
	trace_close_thread
	trace_end
	trace_diag_mode
	trace_diag_func

	Disabling Tracing
	Threads and Logging
	trace_register_thread
	Pthread_create

	Compiling and Linking
	C Compilation and Linking
	Fortran Compilation and Linking
	Ada Example

	Capturing User Events with ntraceud
	The ntraceud Daemon
	ntraceud Modes
	The Default User Daemon Configuration
	ntraceud Options
	Invoking ntraceud

	Capturing Kernel Events with ntracekd
	The ntracekd Daemon
	ntracekd Modes
	ntracekd Options
	ntracekd Invocations

	Performance Tuning
	Preventing Trace Event Loss
	Daemon Scheduling Adjustment
	Increasing Trace Buffer Size
	Programmatic Flushing

	Conserving Disk Space
	Conserving Memory and Accelerating ntrace

	Part II - Graphical Analysis
	Invoking NightTrace
	Command-line Options
	Summary Criteria

	Command-line Arguments
	Trace Event Files
	Event Map Files
	Configuration Files
	Tables
	String Tables
	Pre-Defined Strings Tables
	Format Tables

	Session Configuration Files
	Trace Data Segments

	The NightTrace Main Window
	NightTrace Main window Menu Bar
	NightTrace
	Unsaved Changes

	Search
	Summary
	Daemons
	Login
	Enter Password
	Attach Daemons

	Pages
	Build Custom Kernel Page
	Select Graphs

	Build Process Specific Kernel Page Dialog

	Profiles
	Event
	Edit
	View
	Tools
	Help

	NightTrace Tool Bar
	Profile Area
	Event Area
	Event Detail Area
	Trace Segment Statistic Area
	Daemon Control Area
	Enable / Disable Trace Events

	Daemon Definition Dialog
	Import Daemon Definition
	General
	Target
	Trace Events Output

	User Trace
	Locking Policy
	Shared Memory
	User Event Buffer
	Inheritance

	Events
	Runtime
	Scheduling
	CPU Bias

	Other
	Streaming Options
	Kernel Trace Buffer Options
	Kernel Trace CPU Options

	Profiles
	Profile Menu Bar
	File Menu
	Profile Menu
	Search Menu
	Summary Menu
	Results Menu
	Edit Menu
	Help Menu

	Profile Tool Bar
	Profile Text Area
	Profile Definition Area
	Action Control Area
	Summarizing Statistical Information
	Condition Summaries
	State Summaries
	Summary Options
	Summary Scripts
	Summary Script Environment Variables

	Display Pages
	Default Display Page
	Menu Bar
	Page
	Search
	Summary
	Graph
	Event
	Edit
	Tags
	Edit String Tables
	Edit String Table
	Edit String Table Entry
	Edit Event Map Entry

	Zoom
	View
	Help

	Display Page Tool Bar
	Message Display Area
	Grid
	Interval Scroll Bar
	Interval Control Area

	Display Objects
	Types of Display Objects
	Grid Label
	Data Box
	Column
	Event Graph
	State Graph
	Data Graph
	Ruler

	Operations on Display Objects
	Creating Display Objects
	Selecting Display Objects
	Moving Display Objects
	Resizing Display Objects
	Configuring Display Objects
	Grid Label
	Data Box
	Event Graph
	State Graph
	Data Graph
	Ruler
	Configuration Dialog Push Buttons

	Using Expressions
	Operators
	Operands
	Constants
	Functions
	Function Parameters
	Function Terminology
	Trace Event Functions
	id()
	arg()
	arg_dbl()
	arg_long()
	num_args()
	pid()
	thread_id()
	task_id()
	tid()
	cpu()
	offset()
	time()
	node_id()
	pid_table_name()
	tid_table_name()
	node_name()
	process_name()
	task_name()
	thread_name()
	Multi-Event Functions
	event_gap()
	event_matches()

	State Functions
	Start Functions
	start_id()
	start_arg()
	start_arg_dbl()
	start_arg_long()
	start_num_args()
	start_pid()
	start_thread_id()
	start_task_id()
	start_tid()
	start_cpu()
	start_offset()
	start_time()
	start_node_id()
	start_pid_table_name()
	start_tid_table_name()
	start_node_name()

	End Functions
	end_id()
	end_arg()
	end_arg_dbl()
	end_arg_long()
	end_num_args()
	end_pid()
	end_thread_id()
	end_task_id()
	end_tid()
	end_cpu()
	end_offset()
	end_time()
	end_node_id()
	end_pid_table_name()
	end_tid_table_name()
	end_node_name()

	Multi-State Functions
	state_gap()
	state_dur()
	state_matches()
	state_status()

	Offset Functions
	offset_id()
	offset_arg()
	offset_arg_dbl()
	offset_arg_long()
	offset_num_args()
	offset_pid()
	offset_thread_id()
	offset_task_id()
	offset_tid()
	offset_cpu()
	offset_time()
	offset_node_id()
	offset_pid_table_name()
	offset_tid_table_name()
	offset_node_name()
	offset_process_name()
	offset_task_name()
	offset_thread_name()

	Summary Functions
	min()
	max()
	avg()
	sum()
	min_offset()
	max_offset()
	summary_matches()

	Format and Table Functions
	get_string()
	get_item()
	get_format()
	format()

	Profile References

	Kernel Tracing
	Primary Kernel Trace Events
	Context Switch Trace Event
	Interrupt Trace Events
	Exception Trace Events
	Syscall Trace Events
	Kernel Work Events

	Additional Kernel Events
	Logging Custom Kernel Events

	Viewing Kernel Trace Event Files
	Kernel Display Pages
	Node and CPU Information
	Context Switch Information
	Interrupt Information
	Exception Information
	System call Information
	Process Information
	Kernel Events
	Color Information

	Kernel String Tables

	Part III - Programmatic Analysis
	Using the NightTrace Analysis API
	NightTrace Analysis Application Programming Interface
	Data Structures
	tr_cb_t
	tr_cond_cb_func_t
	tr_cond_func_t
	tr_cond_t
	tr_dir_t
	tr_offset_t
	tr_state_action_t
	tr_state_cb_func_t
	tr_state_info_t
	tr_state_t
	tr_stream_event_t
	tr_stream_func_t
	tr_string_node_t
	tr_t

	Functions
	API Initialization and Destruction
	tr_init()
	tr_destroy()

	Error Detection, Collection, and Reporting
	tr_error_clear()
	tr_error_check()

	Input Specification and Streaming Control
	tr_open_file()
	tr_open_stream()
	tr_close()
	tr_stream_notify()
	tr_stream_read()
	tr_stream_size()
	tr_free()

	Event Offset Positioning
	tr_next_event()
	tr_next_event_()
	tr_prev_event()
	tr_prev_event_()
	tr_search()
	tr_seek()

	Basic Event Attribute Functions
	tr_id()
	tr_id_()
	tr_time()
	tr_time_()
	tr_nargs()
	tr_nargs_()
	tr_arg_int()
	tr_arg_int_()
	tr_arg_dbl()
	tr_arg_dbl_()
	tr_pid()
	tr_pid_()
	tr_tid()
	tr_tid_()
	tr_thread_id()
	tr_thread_id_()
	tr_task_id()
	tr_task_id_()
	tr_cpu()
	tr_cpu_()
	tr_node()
	tr_node_()
	tr_process_name()
	tr_process_name_()
	tr_task_name()
	tr_task_name_()
	tr_thread_name()
	tr_thread_name_()

	Conditions
	tr_cond_create()
	tr_cond_reset()
	tr_cond_find()
	tr_cond_id()
	tr_cond_id_range()
	tr_cond_id_clear()
	tr_cond_cpu()
	tr_cond_cpu_clear()
	tr_cond_pid()
	tr_cond_pid_name()
	tr_cond_pid_clear()
	tr_cond_tid()
	tr_cond_tid_name()
	tr_cond_tid_clear()
	tr_cond_node()
	tr_cond_node_clear()
	tr_cond_func_or()
	tr_cond_func_and()
	tr_cond_func_clear()
	tr_cond_expr_and()
	tr_cond_expr_or()
	tr_cond_not()
	tr_cond_or()
	tr_cond_and()
	tr_cond_copy()
	tr_cond_name()
	tr_cond_satisfy()
	tr_cond_satisfy_()
	tr_cond_register()
	tr_cond_offset()

	State-oriented Interfaces
	tr_state_create()
	tr_state_find()
	tr_state_name()
	tr_state_start_id()
	tr_state_start_id_range()
	tr_state_start_id_clear()
	tr_state_end_id()
	tr_state_end_id_range()
	tr_state_end_id_clear()
	tr_state_start_cond()
	tr_state_start_cond_clear()
	tr_state_end_cond()
	tr_state_end_cond_clear()
	tr_activate()
	tr_state_info()
	tr_state_info_()
	tr_state_active()
	tr_state_active_()

	Output Function
	tr_copy_input()

	String Table Functions
	tr_get_string()
	tr_get_item()
	tr_create_table()
	tr_append_table()

	Callback Interfaces
	tr_iterate()
	tr_halt()
	tr_cancel_cb()
	tr_cond_cb()
	tr_state_cb()

	Part IV - Reference
	NightStar Licensing
	License Keys
	License Requests
	License Server
	License Reports
	Firewall Configuration for Floating Licenses
	License Support

	Kernel Dependencies
	Advantages for NightView
	Advantages for NightTrace
	Advantages for NightProbe
	Advantages for NightTune
	Advantages for NightSim

	NightTrace Logging API Examples
	Single Threaded C Example
	Multi-Threaded C++ Example
	Fortran Example
	Rare Occurrence Example

	NightTrace Analysis API Examples
	list
	list.c

	search
	search.c

	watchdog
	watchdog.c

	ptime
	ptime.c

	browse
	browse.c

	detect
	detect.c

	Answers to Common Questions
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Z

